Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Paffett is active.

Publication


Featured researches published by Michael L. Paffett.


Environmental Health Perspectives | 2010

Mechanisms of diesel-induced endothelial nitric oxide synthase dysfunction in coronary arterioles.

Tom W. Cherng; Michael L. Paffett; Olan Jackson-Weaver; Matthew J. Campen; Benjimen ft Walker; Nancy L. Kanagy

Background and objective Increased air pollutants correlate with increased incidence of cardiovascular disease potentially due to vascular dysfunction. We have reported that acute diesel engine exhaust (DE) exposure enhances vasoconstriction and diminishes acetylcholine (ACh)-induced dilation in coronary arteries in a nitric oxide synthase (NOS)-dependent manner. We hypothesize that acute DE inhalation leads to endothelial dysfunction by uncoupling NOS. Methods Rats inhaled fresh DE (300 μg particulate matter/m3) or filtered air for 5 hr. After off-gassing, intraseptal coronary arteries were isolated and dilation to ACh recorded using videomicroscopy. Results Arteries from DE-exposed animals dilated less to ACh than arteries from air-exposed animals. NOS inhibition did not affect ACh dilation in control arteries but increased dilation in the DE group, suggesting NOS does not normally contribute to ACh-induced dilation in coronary arteries but does contribute to endothelial dysfunction after DE inhalation. Cyclooxygenase (COX) inhibition did not affect ACh dilation in the DE group, but combined inhibition of NOS and COX diminished dilation in both groups and eliminated intergroup differences, suggesting that the two pathways interact. Superoxide scavenging increased ACh dilation in DE arteries, eliminating differences between groups. Tetrahydrobiopterin (BH4) supplementation with sepiapterin restored ACh-mediated dilation in the DE group in a NOS-dependent manner. Superoxide generation (dihydroethidium staining) was greater in DE arteries, and superoxide scavenging, BH4 supplementation, or NOS inhibition reduced the signal in DE but not air arteries. Conclusion Acute DE exposure appears to uncouple NOS, increasing reactive oxygen species generation and causing endothelial dysfunction, potentially because of depletion of BH4 limiting its bioavailability.


Toxicological Sciences | 2012

Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model.

Meghan M. Channell; Michael L. Paffett; Robert B. Devlin; Michael C. Madden; Matthew J. Campen

The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen dioxide (NO(2)). Plasma samples were obtained from human volunteers exposed to 100 μg/m(3) DE or filtered air for 2 h. A second cohort was exposed to 500 ppb NO(2) or filtered air in an identical protocol. Primary human coronary artery endothelial cells (hCAECs) were grown to confluence and treated for 24 h with a 10 or 30% (in media) mixture of plasma obtained before, immediately post or 24 h postexposure to pollutant exposures. Messenger RNA (mRNA) was isolated from hCAECs following the incubation and probed for intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) expression. ICAM-1 mRNA expression was increased by plasma obtained at both timepoints following the NO(2) exposures. VCAM-1 was significantly elevated in cells treated with plasma obtained 24 h following diesel exposure and at both timepoints following NO(2) exposure. Interleukin-8 protein was elevated in the hCAEC supernatant when cells were incubated with plasma from NO(2) exposures. These data indicate that proinflammatory circulating factors are elevated acutely following exposure to both DE and a primary component thereof, NO(2). These functional translational assays offer novel approaches to assessing the cardiovascular risk associated with air pollution exposure.


Toxicological Sciences | 2013

CD36 Mediates Endothelial Dysfunction Downstream of Circulating Factors Induced by O3 Exposure

Sarah Robertson; Elizabeth Colombo; Selita N. Lucas; Pamela R. Hall; Maria Febbraio; Michael L. Paffett; Matthew J. Campen

Inhaled pollutants induce the release of vasoactive factors into the systemic circulation, but little information is available regarding the nature of these factors or their receptors. The pattern recognition receptor CD36 interacts with many damage-related circulating molecules, leading to activation of endothelial cells and promoting vascular inflammation; therefore, we hypothesized that CD36 plays a pivotal role in mediating cross talk between inhaled ozone (O3)-induced circulating factors and systemic vascular dysfunction. O3 exposure (1 ppm × 4h) induced lung inflammation in wild-type (WT) mice, which was absent in the CD36 deficient (CD36(-/-)) mice. Acetylcholine (ACh)-evoked vasorelaxation was impaired in isolated aortas from O3-exposed WT mice but not in vessels from CD36(-/-) mice. To delineate whether vascular impairments were caused by lung inflammation or CD36-mediated generation of circulating factors, naïve aortas were treated with diluted serum from control or O3-exposed WT mice, which recapitulated the impairments of vasorelaxation observed after inhalation exposures. Aortas from CD36(-/-) mice were insensitive to the effects of O3-induced circulating factors, with robust vasorelaxation responses in the presence of serum from O3-exposed WT mice. Lung inflammation was not a requirement for production of circulating vasoactive factors, as serum from O3-exposed CD36(-/-) mice could inhibit vasorelaxation in naïve WT aortas. These results suggest that O3 inhalation induces the release of circulating bioactive factors capable of impairing vasorelaxation to ACh via a CD36-dependent signaling mechanism. Although lung inflammatory and systemic vascular effects were both dependent on CD36, the presence of circulating factors appears to be independent of CD36 and inflammatory responses.


Vascular Pharmacology | 2012

Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: A potential role for atrogin-1 in smooth muscle

Michael L. Paffett; Selita N. Lucas; Matthew J. Campen

Arterial remodeling contributes to elevated pulmonary artery (PA) pressures and right ventricular hypertrophy seen in pulmonary hypertension (PH). Resveratrol, a sirtuin-1 (SIRT1) pathway activator, can prevent the development of PH in a commonly used animal model, but it is unclear whether it can reverse established PH pathophysiology. Furthermore, atrophic ubiquitin ligases, such as atrogin-1 and MuRF-1, are known to be induced by SIRT1 activators but have not been characterized in hypertrophic vascular disease. Therefore, we hypothesized that monocrotaline (MCT)-induced PH would attenuate atrophy pathways in the PA while, conversely, SIRT1 activation (resveratrol) would reverse indices of PH and restore atrophic gene expression. Thus, we injected Sprague-Dawley rats with MCT (50 mg/kg i.p.) or saline at Day 0, and then treated with oral resveratrol or sildenafil from days 28-42 post-MCT injection. Oral resveratrol attenuated established MCT-induced PH indices, including right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening of intrapulmonary arteries. Resveratrol also normalized PA atrogin-1 mRNA expression, which was significantly reduced by MCT. In cultured human PA smooth muscle cells (hPASMC), resveratrol significantly inhibited PDGF-stimulated proliferation and cellular hypertrophy, which was also associated with improvements in atrogin-1 levels. In addition, SIRT1 inhibition augmented hPASMC proliferation, as assessed by DNA mass, and suppressed atrogin mRNA expression. These findings demonstrate an inverse relationship between indices of PH and PA atrogin expression that is SIRT1 dependent and may reflect a novel role for SIRT1 in PASMCs opposing cellular hypertrophy and proliferation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca2+ entry

Nikki L. Jernigan; Michael L. Paffett; Benjimen R. Walker; Thomas C. Resta

Acid-sensing ion channels (ASIC) are voltage-insensitive, cationic channels that have recently been identified in vascular smooth muscle (VSM). It is possible that ASIC contribute to vascular reactivity via Na(+) and Ca(2+) conductance; however, their function in VSM is largely unknown. In pulmonary VSM, store-operated Ca(2+) entry (SOCE) plays a significant role in vasoregulatory mechanisms such as hypoxic pulmonary vasoconstriction and receptor-mediated arterial constriction. Therefore, we hypothesized that ASIC contribute to SOCE in pulmonary VSM. We examined SOCE resulting from depletion of intracellular Ca(2+) stores with cyclopiazonic acid in isolated small pulmonary arteries and primary cultured pulmonary arterial smooth muscle cells by measuring 1) changes in VSM [Ca(2+)](i) using fura-2 indicator dye, 2) Mn(2+) quenching of fura-2 fluorescence, and 3) store-operated Ca(2+) and Na(+) currents using conventional whole cell patch-clamp configuration in voltage-clamp mode. The role of ASIC was assessed by the use of the ASIC inhibitors, amiloride, benzamil, and psalmotoxin 1, or siRNA directed towards ASIC1, ASIC2, or ASIC3 isoforms. We found that store-operated VSM [Ca(2+)](i) responses, Mn(2+) influx, and inward cationic currents were attenuated by either pharmacological ASIC inhibition or treatment with ASIC1 siRNA. These data establish a unique role for ASIC1 in mediating SOCE in pulmonary VSM and provide new insight into mechanisms of VSM Ca(2+) entry and pulmonary vasoregulation.


Toxicological Sciences | 2015

OZONE INHALATION IMPAIRS CORONARY ARTERY DILATION VIA INTRACELLULAR OXIDATIVE STRESS: EVIDENCE FOR SERUM-BORNE FACTORS AS DRIVERS OF SYSTEMIC TOXICITY

Michael L. Paffett; Katherine E. Zychowski; Lianne Sheppard; Sarah Robertson; John Weaver; Selita N. Lucas; Matthew J. Campen

Ambient ozone (O3) levels are associated with cardiovascular morbidity and mortality, but the underlying pathophysiological mechanisms driving extrapulmonary toxicity remain unclear. This study examined the coronary vascular bed of rats in terms of constrictive and dilatory responses to known agonists following a single O3 inhalation exposure. In addition, serum from exposed rats was used in ex vivo preparations to examine whether bioactivity and toxic effects of inhaled O3 could be conveyed to extrapulmonary systems via the circulation. We found that 24 h following inhalation of 1 ppm O3, isolated coronary vessels exhibited greater basal tone and constricted to a greater degree to serotonin stimulation. Vasodilation to acetylcholine (ACh) was markedly diminished in coronary arteries from O3-exposed rats, compared with filtered air-exposed controls. Dilation to ACh was restored by combined superoxide dismutase and catalase treatment, and also by NADPH oxidase inhibition. When dilute (10%) serum from exposed rats was perfused into the lumen of coronary arteries from unexposed, naïve rats, the O3-induced reduction in vasodilatory response to ACh was partially recapitulated. Furthermore, following O3 inhalation, serum exhibited a nitric oxide scavenging capacity, which may partially explain blunted ACh-mediated vasodilatory responses. Thus, bioactivity from inhalation exposures may be due to compositional changes of the circulation. These studies shed light on possible mechanisms of action that may explain O3-associated cardiac morbidity and mortality in humans.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Novel role of endothelial BKCa channels in altered vasoreactivity following hypoxia

Jennifer M. Hughes; Melissa A. Riddle; Michael L. Paffett; Laura V. Gonzalez Bosc; Benjimen R. Walker

The systemic vasculature exhibits attenuated vasoconstriction following hypobaric chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased activity of endothelial cell (EC) large-conductance, calcium-activated potassium (BK(Ca)) channels contributes to this response. Gracilis resistance arteries from hypobaric CH (barometric pressure = 380 mmHg for 48 h) rats demonstrated reduced myogenic reactivity and hyperpolarized VSM membrane potential (E(m)) compared with controls under normoxic ex vivo conditions. These differences were eliminated by endothelial disruption. In the presence of cyclooxygenase and nitric oxide synthase inhibition, combined intraluminal administration of the intermediate and small-conductance, calcium-activated K(+) channel blockers TRAM-34 and apamin was without effect on myogenic responsiveness and VSM E(m) in both groups; however, these variables were normalized in CH arteries by intraluminal administration of the BK(Ca) inhibitor iberiotoxin (IBTX). Basal EC E(m) was hyperpolarized in arteries from CH rats compared with controls and was restored by IBTX, but not by TRAM-34/apamin. K(+) channel blockers were without effect on EC basal E(m) in controls. Similarly, IBTX blocked acetylcholine-induced dilation in arteries from CH rats, but was without effect in controls, whereas TRAM-34/apamin eliminated dilation in controls. Acetylcholine-induced EC hyperpolarization and calcium responses were inhibited by IBTX in CH arteries and by TRAM-34/apamin in controls. Patch-clamp experiments on freshly isolated ECs demonstrated greater K(+) current in cells from CH rats that was normalized by IBTX. IBTX was without effect on K(+) current in controls. We conclude that hypobaric CH induces increased endothelial BK(Ca) channel activity that contributes to reduced myogenic responsiveness and EC and VSM cell hyperpolarization.


Journal of Pharmacology and Experimental Therapeutics | 2010

Altered Protein Kinase C Regulation of Pulmonary Endothelial Store- and Receptor-Operated Ca2+ Entry after Chronic Hypoxia

Michael L. Paffett; Melissa A. Riddle; Nancy L. Kanagy; Thomas C. Resta; Benjimen R. Walker

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with decreased basal pulmonary artery endothelial cell (EC) Ca2+, which correlates with reduced store-operated Ca2+ (SOC) entry. Protein kinase C (PKC) attenuates SOC entry in ECs. Therefore, we hypothesized that PKC has a greater inhibitory effect on EC SOC and receptor-operated Ca2+ entry after CH. To test this hypothesis, we assessed SOC in the presence or absence of the nonselective PKC inhibitor GF109203X [2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide] in freshly isolated, Fura-2-loaded ECs obtained from intrapulmonary arteries of control and CH rats (4 weeks at 0.5 atm). We found that SOC entry and 1-oleoyl-2-acetyl-sn-glycerol (OAG)- and ATP-induced Ca2+ influx were attenuated in ECs from CH rats versus controls, and GF109203X restored SOC and OAG responses to the level of controls. In contrast, nonselective PKC inhibition with GF109203X or the selective PKCε inhibitor myristoylated V1-2 attenuated ATP-induced Ca2+ entry in ECs from control but not CH pulmonary arteries. ATP-induced Ca2+ entry was also attenuated by the T-type voltage-gated Ca2+ channel (VGCC) inhibitor mibefradil in control cells. Consistent with the presence of endothelial T-type VGCC, we observed depolarization-induced Ca2+ influx in control cells that was inhibited by mibefradil. This response was largely absent in ECs from CH arteries. We conclude that CH enhances PKC-dependent inhibition of SOC- and OAG-induced Ca2+ entry. Furthermore, these data suggest that CH may reduce the ATP-dependent Ca2+ entry that is mediated, in part, by PKCε and mibefradil-sensitive Ca2+ channels in control cells.


Journal of Toxicology and Environmental Health | 2011

Formation of Vascular S-Nitrosothiols and Plasma Nitrates/Nitrites Following Inhalation of Diesel Emissions

Travis L. Knuckles; Jennifer G. Buntz; Michael L. Paffett; Meghan M. Channell; Molly E. Harmon; Tom W. Cherng; Selita N. Lucas; Jacob D. McDonald; Nancy L. Kanagy; Matthew J. Campen

Epidemiological studies have associated traffic-related airborne pollution with adverse cardiovascular outcomes. Nitric oxide (NO) is a common component of fresh diesel and gasoline engine emissions that rapidly transforms both in the atmosphere and once inhaled. Because of this rapid transformation, limited information is available in terms of potential human exposures and adverse health effects. Young rats were exposed to whole diesel emissions (DE) adjusted to 300 μg/m3 of particulate matter (containing 3.5 ppm NO) or 0, 3, or 10 ppm NO as a positive control. Animals were also pre-injected (ip) with either saline or N-acetylcysteine (NAC), a precursor of glutathione. Predictably, pure NO exposures led to a concentration-dependent increase in plasma nitrates compared to controls, which lasted for roughly 4 h postexposure. Whole DE exposure for 1 h also led to a doubling of plasma NOx. NAC injection increased the levels of plasma nitrates and nitrites (NOx) in the DE exposure group. Inhibition of nitric oxide symthase (NOS) by N G-nitro-L-arginine (L-NNA) did not block the rise in plasma NOx, demonstrating that the increase was entirely due to exogenous sources. Both DE and pure NO exposures paradoxically led to elevated eNOS expression in aortic tissue. Furthermore, coronary arterioles from NO-exposed animals exhibited greater constriction to endothelin-1 compared to controls, consistent with a derangement of the NOS system. Thus, NO may be an important contributor to traffic-related cardiovascular morbidity, although further research is necessary for proper hazard identification.


PLOS ONE | 2012

Longitudinal In Vivo SPECT/CT Imaging Reveals Morphological Changes and Cardiopulmonary Apoptosis in a Rodent Model of Pulmonary Arterial Hypertension

Michael L. Paffett; Jacob Hesterman; Gabriel Candelaria; Selita N. Lucas; Tamara Anderson; Daniel Irwin; Jack Hoppin; Jeffrey P. Norenberg; Matthew J. Campen

Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis.

Collaboration


Dive into the Michael L. Paffett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay S. Naik

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge