Michael L. Pegis
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael L. Pegis.
Inorganic Chemistry | 2015
Michael L. Pegis; John A. S. Roberts; Derek J. Wasylenko; Elizabeth A. Mader; Aaron M. Appel; James M. Mayer
A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O2 + 4e(-) + 4H(+) ⇋ 2H2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc(+/0)) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol(-1) for MeCN and -1.47 kcal mol(-1) for DMF, and the potential of the H(+)/H2 couple, - 0.028 V in MeCN and -0.662 V in DMF. The H(+)/H2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O2/H2O couple has been extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 and +0.15 V in MeCN and -0.73 and -0.48 V in DMF, respectively. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol(-1) for acetonitrile and +0.6 kcal mol(-1) for DMF.
Journal of the American Chemical Society | 2015
Matthew L. Rigsby; Derek J. Wasylenko; Michael L. Pegis; James M. Mayer
Several substituted iron-porphyrin complexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for four-electron reduction to H2O versus two-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of selectivity results from supported and soluble molecular ORR electrocatalysts must be interpreted with caution, as selectivity is a property not only of the catalyst, but also of the larger mesoscale environment beyond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e(-) path.
Journal of the American Chemical Society | 2014
Derek J. Wasylenko; Carlos Rodríguez; Michael L. Pegis; James M. Mayer
We describe here a direct comparison of electrochemical and spectrochemical experiments to determine rates and selectivity of oxygen reduction catalyzed by iron 5,10,15,20-meso-tetraphenylporphyrin chloride. Good agreement was found between the two methods, suggesting the same mechanism is occurring under both conditions, with the same third-order rate law, similar selectivity, and the derived rate constants agreeing within a factor of at most 4, with k(cat) ≅ 2 × 10(6) M(-2) s(-1). This Communication provides a rare example of a redox catalytic process characterized by two common but very different methods.
ACS central science | 2016
Michael L. Pegis; Bradley A. McKeown; Neeraj Kumar; Kai Lang; Derek J. Wasylenko; X. Peter Zhang; Simone Raugei; James M. Mayer
Improved electrocatalysts for the oxygen reduction reaction (ORR) are critical for the advancement of fuel cell technologies. Herein, we report a series of 11 soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s–1 to an unprecedented value of 2.2 × 106 s–1. These TOFs correlate with the ORR overpotential, which can be modulated by changing the E1/2 of the catalyst using different ancillary ligands, by changing the solvent and solution acidity, and by changing the catalyst’s protonation state. The overpotential is well-defined for these homogeneous electrocatalysts by the E1/2 of the catalyst and the proton activity of the solution. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of high overpotential. The correlation with overpotential is surprising since the turnover limiting steps involve oxygen binding and protonation, as opposed to turnover limiting electron transfer commonly found in Tafel analysis of heterogeneous ORR materials. Computational studies show that the free energies for oxygen binding to the catalyst and for protonation of the superoxide complex are in general linearly related to the catalyst E1/2, and that this is the origin of the overpotential correlations. This analysis thus provides detailed understanding of the ORR barriers. The best catalysts involve partial decoupling of the influence of the second coordination sphere from the properties of the metal center, which is suggested as new molecular design strategy to avoid the limitations of the traditional scaling relationships for these catalysts.
Chemical Reviews | 2018
Michael L. Pegis; Catherine F. Wise; Daniel J. Martin; James M. Mayer
The oxygen reduction reaction (ORR) is a key component of biological processes and energy technologies. This Review provides a comprehensive report of soluble molecular catalysts and electrocatalysts for the ORR. The precise synthetic control and relative ease of mechanistic study for homogeneous molecular catalysts, as compared to heterogeneous materials or surface-adsorbed species, enables a detailed understanding of the individual steps of ORR catalysis. Thus, the Review places particular emphasis on ORR mechanism and thermodynamics. First, the thermochemistry of oxygen reduction and the factors influencing ORR efficiency are described to contextualize the discussion of catalytic studies that follows. Reports of ORR catalysis are presented in terms of their mechanism, with separate sections for catalysis proceeding via initial outer- and inner-sphere electron transfer to O2. The rates and selectivities (for production of H2O2 vs H2O) of these catalysts are provided, along with suggested methods for accurately comparing catalysts of different metals and ligand scaffolds that were examined under different experimental conditions.
Inorganic Chemistry | 2014
Johanna M. Blacquiere; Michael L. Pegis; Simone Raugei; Werner Kaminsky; Amélie Forget; Sarah A. Cook; Taketo Taguchi; James M. Mayer
The synthesis of a new tripodal ligand family that contains tertiary amine groups in the second-coordination sphere is reported. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to function as new molecular catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve the catalyst performance. Two members of the ligand family were each metalated with cobalt(II) and zinc(II) to afford trigonal-monopyramidal complexes. The reaction of the cobalt complexes [Co(L)](-) with dioxygen reversibly generates a small amount of a cobalt(III) superoxo species, which was characterized by electron paramagnetic resonance (EPR) spectroscopy. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)](-) ([Zn(TN(Bn))](-)) with 1 equiv of acid occurs at a primary-coordination-sphere amide moiety rather than at a pendant basic site. The addition of excess acid to any of the complexes [M(L)](-) results in complete proteolysis and formation of the ligands H3L. These undesired reactions limit the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metalated. These studies highlight the importance of the stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions.
Journal of the American Chemical Society | 2017
Michael L. Pegis; Catherine F. Wise; Brian Koronkiewicz; James M. Mayer
Improving molecular catalysis for important electrochemical proton-coupled electron transfer (PCET) reactions, such as the interconversions of H+/H2, O2/H2O, CO2/CO, and N2/NH3, is an ongoing challenge. Synthetic modifications to the molecular catalysts are valuable but often show trade-offs between turnover frequency (TOF) and the effective overpotential required to initiate catalysis (ηeff). Herein, we derive a new approach for improving efficiencies-higher TOF at lower ηeff-by changing the concentrations and properties of the reactants and products, rather than by modifying the catalyst. The dependence of TOF on ηeff is shown to be quite different upon changing, for instance, the pKa of the acid HA versus the concentration or partial pressure of a reactant or product. Using the electrochemical reduction of dioxygen catalyzed by iron porphyrins in DMF as an example, decreasing [HA] 10-fold lowers ηeff by 59 mV and decreases the TOF by a factor of 10. Alternatively, a 10-fold decrease in Ka(HA) also lowers ηeff by 59 mV but only decreases the TOF by a factor of 2. This approach has been used to improve a catalytic TOF by 104 vs the previously reported scaling relationship developed via synthetic modifications to the catalyst. The analysis has the potential to predict improved efficiency and product selectivity of any molecular PCET catalyst, based on its mechanism and rate law.
Journal of the American Chemical Society | 2018
Onyu Jung; Michael L. Pegis; Zixuan Wang; Gourab Banerjee; Coleen T. Nemes; William L. Hoffeditz; Joseph T. Hupp; Charles A. Schmuttenmaer; Gary W. Brudvig; James M. Mayer
Tandem dye-sensitized photoelectrosynthesis cells are promising architectures for the production of solar fuels and commodity chemicals. A key bottleneck in the development of these architectures is the low efficiency of the photocathodes, leading to small current densities. Herein, we report a new design principle for highly active photocathodes that relies on the outer-sphere reduction of a substrate from the dye, generating an unstable radical that proceeds to the desired product. We show that the direct reduction of dioxygen from dye-sensitized nickel oxide (NiO) leads to the production of H2O2. In the presence of oxygen and visible light, NiO photocathodes sensitized with commercially available porphyrin, coumarin, and ruthenium dyes exhibit large photocurrents (up to 400 μA/cm2) near the thermodynamic potential for O2/H2O2 in near-neutral water. Bulk photoelectrolysis of porphyrin-sensitized NiO over 24 h results in millimolar concentrations of H2O2 with essentially 100% faradaic efficiency. To our knowledge, these are among the most active NiO photocathodes reported for multiproton/multielectron transformations. The photoelectrosynthesis proceeds by initial formation of superoxide, which disproportionates to H2O2. This disproportionation-driven charge separation circumvents the inherent challenges in separating electron-hole pairs for photocathodes tethered to inner sphere electrocatalysts and enables new applications for photoelectrosynthesis cells.
Journal of the American Chemical Society | 2017
Yu-Heng Wang; Michael L. Pegis; James M. Mayer; Shannon S. Stahl
A series of mononuclear pseudomacrocyclic cobalt complexes have been investigated as catalysts for O2 reduction. Each of these complexes, with CoIII/II reduction potentials that span nearly 400 mV, mediate highly selective two-electron reduction of O2 to H2O2 (93-99%) using decamethylferrocene (Fc*) as the reductant and acetic acid as the proton source. Kinetic studies reveal that the rate exhibits a first-order dependence on [Co] and [AcOH], but no dependence on [O2] or [Fc*]. A linear correlation is observed between log(TOF) vs E1/2(CoIII/II) for the different cobalt complexes (TOF = turnover frequency). The thermodynamic potential for O2 reduction to H2O2 was estimated by measuring the H+/H2 open-circuit potential under the reaction conditions. This value provides the basis for direct assessment of the thermodynamic efficiency of the different catalysts and shows that H2O2 is formed with overpotentials as low as 90 mV. These results are compared with a recently reported series of Fe-porphyrin complexes, which catalyze four-electron reduction of O2 to H2O. The data show that the TOFs of the Co complexes exhibit a shallower dependence on E1/2(MIII/II) than the Fe complexes. This behavior, which underlies the low overpotential, is rationalized on the basis of the catalytic rate law.
Journal of the American Chemical Society | 2018
Sarmistha Bhunia; Atanu Rana; Pronay Roy; Daniel J. Martin; Michael L. Pegis; Bijan Roy; Abhishek Dey
Facile and selective 4e-/4H+ electrochemical reduction of O2 to H2O in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e-/4H+ electrochemical O2 reduction to H2O is possible with rate constants as fast as 105 M-1 s-1 under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O2 reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O2 to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O2 with rate constants >107 M-1 s-1 while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.