Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Stitzel is active.

Publication


Featured researches published by Michael L. Stitzel.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants

Stephen C. J. Parker; Michael L. Stitzel; D. Leland Taylor; Jose Miguel Orozco; Michael R. Erdos; Jennifer A. Akiyama; Kelly Lammerts van Bueren; Peter S. Chines; Nisc Comparative Sequencing Program; Brian L. Black; Axel Visel; Len A. Pennacchio; Francis S. Collins; Jesse Becker; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han; April Hargrove; Shi-ling Ho; Taccara Johnson; Richelle Legaspi; Sean Lovett; Quino Maduro

Significance Using high-throughput experiments, we determined the functional epigenomic landscape in pancreatic islet cells. Computational integration of these data along with similar data from the ENCODE project revealed the presence of large gene control elements across diverse cell types that we refer to as “stretch enhancers.” Stretch enhancers are cell type specific and are associated with increased expression of genes involved in cell-specific processes. We find that genetic variations associated with common disease are highly enriched in stretch enhancers; notably, stretch enhancers specific to pancreatic islets harbor variants linked to type 2 diabetes and related traits. We propose that stretch enhancers form as pluripotent cells differentiate into committed lineages, to program important cell-specific gene expression. Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those from nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (≥3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type–specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type–specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases.


Cell Metabolism | 2010

Global Epigenomic Analysis of Primary Human Pancreatic Islets Provides Insights into Type 2 Diabetes Susceptibility Loci

Michael L. Stitzel; Praveen Sethupathy; Daniel Pearson; Peter S. Chines; Lingyun Song; Michael R. Erdos; Ryan P. Welch; Stephen C. J. Parker; Alan P. Boyle; Laura J. Scott; Elliott H. Margulies; Michael Boehnke; Terrence S. Furey; Gregory E. Crawford; Francis S. Collins

Identifying cis-regulatory elements is important to understanding how human pancreatic islets modulate gene expression in physiologic or pathophysiologic (e.g., diabetic) conditions. We conducted genome-wide analysis of DNase I hypersensitive sites, histone H3 lysine methylation modifications (K4me1, K4me3, K79me2), and CCCTC factor (CTCF) binding in human islets. This identified ∼18,000 putative promoters (several hundred unannotated and islet-active). Surprisingly, active promoter modifications were absent at genes encoding islet-specific hormones, suggesting a distinct regulatory mechanism. Of 34,039 distal (nonpromoter) regulatory elements, 47% are islet unique and 22% are CTCF bound. In the 18 type 2 diabetes (T2D)-associated loci, we identified 118 putative regulatory elements and confirmed enhancer activity for 12 of 33 tested. Among six regulatory elements harboring T2D-associated variants, two exhibit significant allele-specific differences in activity. These findings present a global snapshot of the human islet epigenome and should provide functional context for noncoding variants emerging from genetic studies of T2D and other islet disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma

Jared J. Gartner; Stephen C. J. Parker; Todd D. Prickett; Ken Dutton-Regester; Michael L. Stitzel; Jimmy C. Lin; Sean Davis; Vijaya L. Simhadri; Sujata Jha; Nobuko Katagiri; Valer Gotea; Jamie K. Teer; Xiaomu Wei; Mario A. Morken; Umesh Bhanot; Guo Chen; Laura Elnitski; Michael A. Davies; Jeffrey E. Gershenwald; Hannah Carter; Rachel Karchin; William H. Robinson; Steven E. Robinson; Steven A. Rosenberg; Francis S. Collins; Giovanni Parmigiani; Anton A. Komar; Chava Kimchi-Sarfaty; Nicholas K. Hayward; Elliott H. Margulies

Synonymous mutations, which do not alter the protein sequence, have been shown to affect protein function [Sauna ZE, Kimchi-Sarfaty C (2011) Nat Rev Genet 12(10):683–691]. However, synonymous mutations are rarely investigated in the cancer genomics field. We used whole-genome and -exome sequencing to identify somatic mutations in 29 melanoma samples. Validation of one synonymous somatic mutation in BCL2L12 in 285 samples identified 12 cases that harbored the recurrent F17F mutation. This mutation led to increased BCL2L12 mRNA and protein levels because of differential targeting of WT and mutant BCL2L12 by hsa-miR-671–5p. Protein made from mutant BCL2L12 transcript bound p53, inhibited UV-induced apoptosis more efficiently than WT BCL2L12, and reduced endogenous p53 target gene transcription. This report shows selection of a recurrent somatic synonymous mutation in cancer. Our data indicate that silent alterations have a role to play in human cancer, emphasizing the importance of their investigation in future cancer genome studies.


American Journal of Human Genetics | 2014

A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell

Jennifer R. Kulzer; Michael L. Stitzel; Mario A. Morken; Jeroen R. Huyghe; Christian Fuchsberger; Johanna Kuusisto; Markku Laakso; Michael Boehnke; Francis S. Collins; Karen L. Mohlke

Genome-wide association studies (GWASs) have identified more than 70 loci associated with type 2 diabetes (T2D), but for most, the underlying causal variants, associated genes, and functional mechanisms remain unknown. At a T2D- and fasting-proinsulin-associated locus on 11q13.4, we have identified a functional regulatory DNA variant, a candidate target gene, and a plausible underlying molecular mechanism. Fine mapping, conditional analyses, and exome array genotyping in 8,635 individuals from the Metabolic Syndrome in Men study confirmed a single major association signal between fasting proinsulin and noncoding variants (p = 7.4 × 10(-50)). Measurement of allele-specific mRNA levels in human pancreatic islet samples heterozygous for rs11603334 showed that the T2D-risk and proinsulin-decreasing allele (C) is associated with increased ARAP1 expression (p < 0.02). We evaluated four candidate functional SNPs for allelic effects on transcriptional activity by performing reporter assays in rodent pancreatic beta cell lines. The C allele of rs11603334, located near one of the ARAP1 promoters, exhibited 2-fold higher transcriptional activity than did the T allele (p < 0.0001); three other candidate SNPs showed no allelic differences. Electrophoretic mobility shift assays demonstrated decreased binding of pancreatic beta cell transcriptional regulators PAX6 and PAX4 to the rs11603334 C allele. Collectively, these data suggest that the T2D-risk allele of rs11603334 could abrogate binding of a complex containing PAX6 and PAX4 and thus lead to increased promoter activity and ARAP1 expression in human pancreatic islets. This work suggests that increased ARAP1 expression might contribute to T2D susceptibility at this GWAS locus.


Diabetes | 2013

Autosomal Dominant Diabetes Arising from a Wolfram Syndrome 1 Mutation

Lori L. Bonnycastle; Peter S. Chines; Takashi Hara; Jeroen R. Huyghe; Amy J. Swift; Pirkko Heikinheimo; Jana Mahadevan; Sirkku Peltonen; Hanna Huopio; Pirjo Nuutila; Rachel L. Goldfeder; Michael L. Stitzel; Simin Lu; Michael Boehnke; Fumihiko Urano; Francis S. Collins; Markku Laakso

We used an unbiased genome-wide approach to identify exonic variants segregating with diabetes in a multigenerational Finnish family. At least eight members of this family presented with diabetes with age of diagnosis ranging from 18 to 51 years and a pattern suggesting autosomal dominant inheritance. We sequenced the exomes of four affected members of this family and performed follow-up genotyping of additional affected and unaffected family members. We uncovered a novel nonsynonymous variant (p.Trp314Arg) in the Wolfram syndrome 1 (WFS1) gene that segregates completely with the diabetic phenotype. Multipoint parametric linkage analysis with 13 members of this family identified a single linkage signal with maximum logarithm of odds score 3.01 at 4p16.2-p16.1, corresponding to a region harboring the WFS1 locus. Functional studies demonstrate a role for this variant in endoplasmic reticulum stress, which is consistent with the β-cell failure phenotype seen in mutation carriers. This represents the first compelling report of a mutation in WFS1 associated with dominantly inherited nonsyndromic adult-onset diabetes.


Genome Research | 2017

Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes

Nathan Lawlor; Joshy George; Mohan Bolisetty; Romy Kursawe; Lili Sun; V Sivakamasundari; Ina Kycia; Paul Robson; Michael L. Stitzel

Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type-specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Genetic regulatory signatures underlying islet gene expression and type 2 diabetes.

Arushi Varshney; Laura J. Scott; Ryan P. Welch; Michael R. Erdos; Peter S. Chines; Ricardo D'Oliveira Albanus; Peter Orchard; Brooke N. Wolford; Romy Kursawe; Swarooparani Vadlamudi; Maren E. Cannon; John P. Didion; John Hensley; Anthony Kirilusha; Lori L. Bonnycastle; D. Leland Taylor; Richard M. Watanabe; Karen L. Mohlke; Michael Boehnke; Francis S. Collins; Stephen C. J. Parker; Michael L. Stitzel

Significance The majority of genetic variants associated with type 2 diabetes (T2D) are located outside of genes in noncoding regions that may regulate gene expression in disease-relevant tissues, like pancreatic islets. Here, we present the largest integrated analysis to date of high-resolution, high-throughput human islet molecular profiling data to characterize the genome (DNA), epigenome (DNA packaging), and transcriptome (gene expression). We find that T2D genetic variants are enriched in regions of the genome where transcription Regulatory Factor X (RFX) is predicted to bind in an islet-specific manner. Genetic variants that increase T2D risk are predicted to disrupt RFX binding, providing a molecular mechanism to explain how the genome can influence the epigenome, modulating gene expression and ultimately T2D risk. Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition.


Trends in Genetics | 2017

Genomics of Islet (Dys)function and Type 2 Diabetes

Nathan Lawlor; Shubham Khetan; Duygu Ucar; Michael L. Stitzel

Pancreatic islet dysfunction and beta cell failure are hallmarks of type 2 diabetes mellitus (T2DM) pathogenesis. In this review, we discuss how genome-wide association studies (GWASs) and recent developments in islet (epi)genome and transcriptome profiling (particularly single cell analyses) are providing novel insights into the genetic, environmental, and cellular contributions to islet (dys)function and T2DM pathogenesis. Moving forward, study designs that interrogate and model genetic variation [e.g., allelic profiling and (epi)genome editing] will be critical to dissect the molecular genetics of T2DM pathogenesis, to build next-generation cellular and animal models, and to develop precision medicine approaches to detect, treat, and prevent islet (dys)function and T2DM.


Journal of Experimental Medicine | 2017

The chromatin accessibility signature of human immune aging stems from CD8(+) T cells.

Duygu Ucar; Eladio J. Márquez; Cheng-Han Chung; Radu Marches; Robert J Rossi; Asli Uyar; Te-Chia Wu; Joshy George; Michael L. Stitzel; A. Karolina Palucka; George A. Kuchel; Jacques Banchereau

Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-&kgr;B and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency.


Diabetes | 2017

A Type 2 Diabetes–Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus

Tamara S. Roman; Maren E. Cannon; Swarooparani Vadlamudi; Martin L. Buchkovich; Brooke N. Wolford; Ryan P. Welch; Mario A. Morken; Grace J. Kwon; Arushi Varshney; Romy Kursawe; Ying Wu; Anne U. Jackson; Michael R. Erdos; Johanna Kuusisto; Markku Laakso; Laura J. Scott; Michael Boehnke; Francis S. Collins; Stephen C. J. Parker; Michael L. Stitzel; Karen L. Mohlke

Molecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of ADCY5, a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic β-cell insulin secretion. We demonstrated that type 2 diabetes risk alleles are associated with decreased ADCY5 expression in human islets and examined candidate variants for regulatory function. rs11708067 overlaps a predicted enhancer region in pancreatic islets. The type 2 diabetes risk rs11708067-A allele showed fewer H3K27ac ChIP-seq reads in human islets, lower transcriptional activity in reporter assays in rodent β-cells (rat 832/13 and mouse MIN6), and increased nuclear protein binding compared with the rs11708067-G allele. Homozygous deletion of the orthologous enhancer region in 832/13 cells resulted in a 64% reduction in expression level of Adcy5, but not adjacent gene Sec22a, and a 39% reduction in insulin secretion. Together, these data suggest that rs11708067-A risk allele contributes to type 2 diabetes by disrupting an islet enhancer, which results in reduced ADCY5 expression and impaired insulin secretion.

Collaboration


Dive into the Michael L. Stitzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis S. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter S. Chines

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Erdos

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shubham Khetan

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge