Michael Lampis
Paris Dauphine University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Lampis.
Algorithmica | 2012
Michael Lampis
Possibly the most famous algorithmic meta-theorem is Courcelle’s theorem, which states that all MSO-expressible graph properties are decidable in linear time for graphs of bounded treewidth. Unfortunately, the running time’s dependence on the formula describing the problem is in general a tower of exponentials of unbounded height, and there exist lower bounds proving that this cannot be improved even if we restrict ourselves to deciding FO logic on trees.We investigate whether this parameter dependence can be improved by focusing on two proper subclasses of the class of bounded treewidth graphs: graphs of bounded vertex cover and graphs of bounded max-leaf number. We prove stronger algorithmic meta-theorems for these more restricted classes of graphs. More specifically, we show it is possible to decide any FO property in both of these classes with a singly exponential parameter dependence and that it is possible to decide MSO logic on graphs of bounded vertex cover with a doubly exponential parameter dependence. We also prove lower bound results which show that our upper bounds cannot be improved significantly, under widely believed complexity assumptions. Our work addresses an open problem posed by Michael Fellows.
international symposium on algorithms and computation | 2008
Michael Lampis; Georgia Kaouri; Valia Mitsou
We place our focus on the gap between treewidths success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically Hamiltonian Circuit and Max Cut, and the failure of its directed variants (directed tree-width [9], DAG-width [11] and kelly-width [8]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that Directed Hamiltonian Circuit is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that Max Di Cut remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Our results also apply to directed pathwidth.
international workshop and international workshop on approximation, randomization, and combinatorial optimization. algorithms and techniques | 2012
Michael Lampis
The Traveling Salesman Problem is one of the most studied problems in computational complexity and its approximability has been a long standing open question. Currently, the best known inapproximability threshold known is \(\frac{220}{219}\) due to Papadimitriou and Vempala. Here, using an essentially different construction and also relying on the work of Berman and Karpinski on bounded occurrence CSPs, we give an alternative and simpler inapproximability proof which improves the bound to \(\frac{185}{184}\).
Theory of Computing Systems \/ Mathematical Systems Theory | 2011
Gregory Z. Gutin; Eun Jung Kim; Michael Lampis; Valia Mitsou
We study the well-known Vertex Cover problem parameterized above and below tight bounds. We show that two of the parameterizations (both were suggested by Mahajan et al. in J. Comput. Syst. Sci. 75(2):137–153, 2009) are fixed-parameter tractable and two other parameterizations are W[1]-hard (one of them is, in fact, W[2]-hard).
Information Processing Letters | 2011
Michael Lampis
In a recent paper Soleimanfallah and Yeo proposed a kernelization algorithm for vertex cover which, for any fixed constant c, produces a kernel of order 2k-c in polynomial time. In this paper we show how their techniques can be extended to improve the produced kernel to order 2k-clogk, for any fixed constant c.
Discrete Optimization | 2011
Michael Lampis; Georgia Kaouri; Valia Mitsou
We place our focus on the gap between treewidths success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically Hamiltonian Circuit and Max Cut, and the failure of its directed variants (directed treewidth (Johnson et al., 2001 [13]), DAG-width (Obdrzalek, 2006 [14]) and Kelly-width (Hunter and Kreutzer, 2007 [15]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that Directed Hamiltonian Circuit is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that Max Di Cut remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Along the way, we extend our reduction for Directed Hamiltonian Circuit to show that the related Minimum Leaf Outbranching problem is also W[2]-hard when naturally parameterized by the number of leaves of the solution, even if the input graph has constant width. All our results also apply to directed pathwidth and cycle rank.
Journal of Computer and System Sciences | 2015
Marek Karpinski; Michael Lampis; Richard Schmied
In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results.
european symposium on algorithms | 2010
Michael Lampis
Possibly the most famous algorithmic meta-theorem is Courcelles theorem, which states that all MSO-expressible graph properties are decidable in linear time for graphs of bounded treewidth. Unfortunately, the running times dependence on the formula describing the problem is in general a tower of exponentials of unbounded height, and there exist lower bounds proving that this cannot be improved even if we restrict ourselves to deciding FO logic on trees. We investigate whether this parameter dependence can be improved by focusing on two proper subclasses of the class of bounded treewidth graphs: graphs of bounded vertex cover and graphs of bounded max-leaf number. We prove stronger algorithmic meta-theorems for these more restricted classes of graphs. More specifically, we show it is possible to decide any FO property in both of these classes with a singly exponential parameter dependence and that it is possible to decide MSO logic on graphs of bounded vertex cover with a doubly exponential parameter dependence. We also prove lower bound results which show that our upper bounds cannot be improved significantly, under widely believed complexity assumptions. Our work addresses an open problem posed by Michael Fellows.
international colloquium on automata languages and programming | 2013
Michael Lampis
A well-known result by Frick and Grohe shows that deciding FO logic on trees involves a parameter dependence that is a tower of exponentials. Though this lower bound is tight for Courcelles theorem, it has been evaded by a series of recent meta-theorems for other graph classes. Here we provide some additional non-elementary lower bound results, which are in some senses stronger. Our goal is to explain common traits in these recent meta-theorems and identify barriers to further progress. More specifically, first, we show that on the class of threshold graphs, and therefore also on any union and complement-closed class, there is no model-checking algorithm with elementary parameter dependence even for FO logic. Second, we show that there is no model-checking algorithm with elementary parameter dependence for MSO logic even restricted to paths (or equivalently to unary strings), unless EXP=NEXP. As a corollary, we resolve an open problem on the complexity of MSO model-checking on graphs of bounded max-leaf number. Finally, we look at MSO on the class of colored trees of depth d. We show that, assuming the ETH, for every fixed d≥1 at least d+1 levels of exponentiation are necessary for this problem, thus showing that the (d+1)-fold exponential algorithm recently given by Gajarský and Hliněnỳ is essentially optimal.
fun with algorithms | 2007
Michael Lampis; Valia Mitsou
In the classical wolf-goat-cabbage puzzle, a ferry boat man must ferry three items across a river using a boat that has room for only one, without leaving two incompatible items on the same bank alone. In this paper we define and study a family of optimization problems called FERRY problems, which may be viewed as generalizations of this familiar puzzle. In all FERRY problems we are given a set of items and a graph with edges connecting items that must not be left together unattended. We present the FERRY COVER problem (FC), where the objective is to determine the minimum required boat size and demonstrate a close connection with VERTEX COVER which leads to hardness and approximation results. We also completely solve the problem on trees. Then we focus on a variation of the same problem with the added constraint that only 1 round-trip is allowed (FC1). We present a reduction from MAX-NAE- {3}-SAT which shows that this problem is NP-hard and APX-hard. We also provide an approximation algorithm for trees with a factor asymptotically equal to 4/3. Finally, we generalize the above problem to define FCm, where at most m round-trips are allowed, and MFTk, which is the problem of minimizing the number of round-trips when the boat capacity is k. We present some preliminary lemmata for both, which provide bounds on the value of the optimal solution, and relate them to FC.