Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Leffak is active.

Publication


Featured researches published by Michael Leffak.


Cell | 2001

Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin

Suman K. Dhar; Kenichi Yoshida; Yuichi J. Machida; Poonam Khaira; Biswendu Chaudhuri; James A. Wohlschlegel; Michael Leffak; John L. Yates; Anindya Dutta

A hypomorphic mutation made in the ORC2 gene of a human cancer cell line through homologous recombination decreased Orc2 protein levels by 90%. The G1 phase of the cell cycle was prolonged, but there was no effect on the utilization of either the c-Myc or beta-globin cellular origins of replication. Cells carrying this mutation failed to support the replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV), and this defect was rescued by reintroduction of Orc2. Orc2 specifically associates with oriP in cells, most likely through its interaction with EBNA1. Geminin, an inhibitor of the mammalian replication initiation complex, inhibits replication from oriP. Therefore, ORC and the human replication initiation apparatus is required for replication from a viral origin of replication.


Nucleic Acids Research | 2005

The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells

Michael G. Kemp; Maloy Ghosh; Guoqi Liu; Michael Leffak

Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.


Nature Chemical Biology | 2010

Replication-dependent instability at (CTG)•(CAG) repeat hairpins in human cells

Guoqi Liu; Xiaomi Chen; John J. Bissler; Richard R. Sinden; Michael Leffak

Instability of (CTG)•(CAG) microsatellite trinucleotide repeat (TNR) sequences is responsible for more than one dozen neurological or neuromuscular diseases. TNR instability during DNA synthesis is thought to involve slipped strand or hairpin structures in template or nascent DNA strands, although direct evidence for hairpin formation in human cells is lacking. We have used targeted recombination to create a series of isogenic HeLa cell lines in which (CTG)•(CAG) repeats are replicated from an ectopic copy of the c-myc replication origin. In this system the tendency of chromosomal (CTG)•(CAG) tracts to expand or contract was affected by origin location and the leading or lagging strand replication orientation of the repeats, and instability was enhanced by prolonged cell culture, increasing TNR length, and replication inhibition. Hairpin cleavage by synthetic zinc finger nucleases in these cells has provided the first direct evidence for the formation of hairpin structures during replication in vivo.


Molecular and Cellular Biology | 2003

Multiple Functional Elements Comprise a Mammalian Chromosomal Replicator

Guoqi Liu; Michelle Malott; Michael Leffak

ABSTRACT The structure of replication origins in metazoans is only nominally similar to that in model organisms, such as Saccharomyces cerevisiae. By contrast to the compact origins of budding yeast, in metazoans multiple elements act as replication start sites or control replication efficiency. We first reported that replication forks diverge from an origin 5′ to the human c-myc gene and that a 2.4-kb core fragment of the origin displays autonomous replicating sequence activity in plasmids and replicator activity at an ectopic chromosomal site. Here we have used clonal HeLa cell lines containing mutated c-myc origin constructs integrated at the same chromosomal location to identify elements important for DNA replication. Replication activity was measured before or after integration of the wild-type or mutated origins using PCR-based nascent DNA abundance assays. We find that deletions of several segments of the c-myc origin, including the DNA unwinding element and transcription factor binding sites, substantially reduced replicator activity, whereas deletion of the c-myc promoter P1 had only a modest effect. Substitution mutagenesis indicated that the sequence of the DNA unwinding element, rather than the spacing of flanking sequences, is critical. These results identify multiple functional elements essential for c-myc replicator activity.


Molecular and Cellular Biology | 1999

Activity of the c-myc Replicator at an Ectopic Chromosomal Location

Michelle Malott; Michael Leffak

ABSTRACT DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.


Journal of Cellular Biochemistry | 2000

Major DNA replication initiation sites in the c-myc locus in human cells.

Liang Tao; Zhifeng Dong; Michael Leffak; Maria Zannis-Hadjopoulos; Gerald B. Price

DNA replication initiation sites and initiation frequencies over 12.5 kb of the human c‐myc locus, including 4.6 kb of new 5′ sequence, were determined based on short nascent DNA abundance measured by competitive polymerase chain reaction using 21 primer sets. In previous measurements, no comparative quantitation of nascent strand abundance was performed, and distinction of major from minor initiation sites was not feasible. Two major initiation sites were identified in this study. One predominant site has been located at ∼0.5 kb upstream of exon 1 of the c‐myc gene, and a second new major site is located in exon 2. The site in exon 2 has not been previously identified. In addition, there are other sites that may act as less frequently used initiation sites, some of which may correspond to sites in previous reports. Furthermore, a comparison of the abundance of DNA replication intermediates over this same region of the c‐myc locus between HeLa and normal skin fibroblast (NSF) cells indicated that the relative distribution was very similar, but that nascent strand abundance in HeLa cells was approximately twice that in NSF relative to the abundance at the lamin B2 origin. This increased activity at initiation sites in the c‐myc locus may mainly be influenced by regulators at higher levels in transformed cells like HeLa. J. Cell. Biochem. 78:442–457, 2000.


Molecular and Cellular Biology | 2010

The DNA Unwinding Element Binding Protein DUE-B Interacts with Cdc45 in Preinitiation Complex Formation

A. Chowdhury; G. Liu; Michael G. Kemp; Xiaomi Chen; N. Katrangi; S. Myers; Maloy Ghosh; J. Yao; Yanzhe Gao; Paula A. Bubulya; Michael Leffak

ABSTRACT Template unwinding during DNA replication initiation requires the loading of the MCM helicase activator Cdc45 at replication origins. We show that Cdc45 interacts with the DNA unwinding element (DUE) binding protein DUE-B and that these proteins localize to the DUEs of active replication origins. DUE-B and Cdc45 are not bound at the inactive c-myc replicator in the absence of a functional DUE or at the recently identified ataxin 10 (ATX10) origin, which is silent before disease-related (ATTCT)n repeat length expansion of its DUE sequence, despite the presence of the origin recognition complex (ORC) and MCM proteins at these origins. Addition of a heterologous DUE to the ectopic c-myc origin, or expansion of the ATX10 DUE, leads to origin activation, DUE-B binding, and Cdc45 binding. DUE-B, Cdc45, and topoisomerase IIβ binding protein 1 (TopBP1) form complexes in cell extracts and when expressed from baculovirus vectors. During replication in Xenopus egg extracts, DUE-B and Cdc45 bind to chromatin with similar kinetics, and DUE-B immunodepletion blocks replication and the loading of Cdc45 and a fraction of TopBP1. The coordinated binding of DUE-B and Cdc45 to origins and the physical interactions of DUE-B, Cdc45, and TopBP1 suggest that complexes of these proteins are necessary for replication initiation.


Molecular and Cellular Biology | 2004

Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity.

Maloy Ghosh; Guoqi Liu; G. Randall; J. Bevington; Michael Leffak

ABSTRACT The observation that transcriptionally active genes generally replicate early in S phase and observations of the interaction between transcription factors and replication proteins support the thesis that promoter elements may have a role in DNA replication. To test the relationship between transcription and replication we constructed HeLa cell lines in which inducible green fluorescent protein (GFP)-encoding genes replaced the proximal ∼820-bp promoter region of the c-myc gene. Without the presence of an inducer, basal expression occurred from the GFP gene in either orientation and origin activity was restored to the mutant c-myc replicator. In contrast, replication initiation was repressed upon induction of transcription. When basal or induced transcription complexes were slowed by the presence of α-amanitin, origin activity depended on the orientation of the transcription unit. To test mechanistically whether basal transcription or transcription factor binding was sufficient for replication rescue by the uninduced GFP genes, a GAL4p binding cassette was used to replace all regulatory sequences within ∼1,400 bp 5′ to the c-myc gene. In these cells, expression of a CREB-GAL4 fusion protein restored replication origin activity. These results suggest that transcription factor binding can enhance replication origin activity and that high levels of expression or the persistence of transcription complexes can repress it.


Molecular and Cellular Biology | 2007

Unstable Spinocerebellar Ataxia Type 10 (ATTCT) (AGAAT) Repeats Are Associated with Aberrant Replication at the ATX10 Locus and Replication Origin-Dependent Expansion at an Ectopic Site in Human Cells

Guoqi Liu; John J. Bissler; Richard R. Sinden; Michael Leffak

ABSTRACT Spinocerebellar ataxia type 10 (SCA10) is associated with expansion of (ATTCT)n repeats (where n is the number of repeats) within the ataxin 10 (ATX10/E46L) gene. The demonstration that (ATTCT)n tracts can act as DNA unwinding elements (DUEs) in vitro has suggested that aberrant replication origin activity occurs at expanded (ATTCT)n tracts and may lead to their instability. Here, we confirm these predictions. The wild-type ATX10 locus displays inefficient origin activity, but origin activity is elevated at the expanded ATX10 loci in patient-derived cells. To test whether (ATTCT)n tracts can potentiate origin activity, cell lines were constructed that contain ectopic copies of the c-myc replicator in which the essential DUE was replaced by ATX10 DUEs with (ATTCT)n. ATX10 DUEs containing (ATTCT)27 or (ATTCT)48, but not (ATTCT)8 or (ATTCT)13, could substitute functionally for the c-myc DUE, but (ATTCT)48 could not act as an autonomous replicator. Significantly, chimeric c-myc replicators containing ATX10 DUEs displayed length-dependent (ATTCT)n instability. By 250 population doublings, dramatic two- and fourfold length expansions were observed for (ATTCT)27 and (ATTCT)48 but not for (ATTCT)8 or (ATTCT)13. These results implicate replication origin activity as one molecular mechanism associated with the instability of (ATTCT)n tracts that are longer than normal length.


Molecular and Cellular Biology | 2006

Differential Binding of Replication Proteins across the Human c-myc Replicator

Maloy Ghosh; Michael G. Kemp; Guoqi Liu; Marion Ritzi; Aloys Schepers; Michael Leffak

ABSTRACT The binding of the prereplication complex proteins Orc1, Orc2, Mcm3, Mcm7, and Cdc6 and the novel DNA unwinding element (DUE) binding protein DUE-B to the endogenous human c-myc replicator was studied by chromatin immunoprecipitation. In G1-arrested HeLa cells, Mcm3, Mcm7, and DUE-B were prominent near the DUE, while Orc1 and Orc2 were least abundant near the DUE and more abundant at flanking sites. Cdc6 binding mirrored that of Orc2 in G1-arrested cells but decreased in asynchronous or M-phase cells. Similarly, the signals from Orc1, Mcm3, and Mcm7 were at background levels in cells arrested in M phase, whereas Orc2 retained the distribution seen in G1-phase cells. Previously shown to cause histone hyperacetylation and delocalization of replication initiation, trichostatin A treatment of cells led to a parallel qualitative change in the distribution of Mcm3, but not Orc2, across the c-myc replicator. Orc2, Mcm3, and DUE-B were also bound at an ectopic c-myc replicator, where deletion of sequences essential for origin activity was associated with the loss of DUE-B binding or the alteration of chromatin structure and loss of Mcm3 binding. These results show that proteins implicated in replication initiation are selectively and differentially bound across the c-myc replicator, dependent on discrete structural elements in DNA or chromatin.

Collaboration


Dive into the Michael Leffak's collaboration.

Top Co-Authors

Avatar

Guoqi Liu

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Maloy Ghosh

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Michael G. Kemp

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Xiaomi Chen

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Richard R. Sinden

Florida Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Bissler

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Todd Lewis

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Yanzhe Gao

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Alpa Trivedi

Wright State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge