Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael M. Desai is active.

Publication


Featured researches published by Michael M. Desai.


Genetics | 2007

Beneficial Mutation–Selection Balance and the Effect of Linkage on Positive Selection

Michael M. Desai; Daniel S. Fisher

When beneficial mutations are rare, they accumulate by a series of selective sweeps. But when they are common, many beneficial mutations will occur before any can fix, so there will be many different mutant lineages in the population concurrently. In an asexual population, these different mutant lineages interfere and not all can fix simultaneously. In addition, further beneficial mutations can accumulate in mutant lineages while these are still a minority of the population. In this article, we analyze the dynamics of such multiple mutations and the interplay between multiple mutations and interference between clones. These result in substantial variation in fitness accumulating within a single asexual population. The amount of variation is determined by a balance between selection, which destroys variation, and beneficial mutations, which create more. The behavior depends in a subtle way on the population parameters: the population size, the beneficial mutation rate, and the distribution of the fitness increments of the potential beneficial mutations. The mutation–selection balance leads to a continually evolving population with a steady-state fitness variation. This variation increases logarithmically with both population size and mutation rate and sets the rate at which the population accumulates beneficial mutations, which thus also grows only logarithmically with population size and mutation rate. These results imply that mutator phenotypes are less effective in larger asexual populations. They also have consequences for the advantages (or disadvantages) of sex via the Fisher–Muller effect; these are discussed briefly.


Nature | 2013

Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations

Gregory I. Lang; Daniel P. Rice; Mark J. Hickman; Erica Sodergren; George M. Weinstock; David Botstein; Michael M. Desai

The dynamics of adaptation determine which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in the evolution of antibiotic resistance, the response of pathogens to immune selection, and the dynamics of cancer progression. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational ‘cohorts’. Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favours parallel evolutionary solutions in replicate populations.


Current Biology | 2007

The Speed of Evolution and Maintenance of Variation in Asexual Populations

Michael M. Desai; Daniel S. Fisher; Andrew W. Murray

BACKGROUND The rate at which beneficial mutations accumulate determines how fast asexual populations evolve, but this is only partially understood. Some recent clonal-interference models suggest that evolution in large asexual populations is limited because smaller beneficial mutations are outcompeted by larger beneficial mutations that occur in different lineages within the same population. This analysis assumes that the important mutations fix one at a time; it ignores multiple beneficial mutations that occur in the lineage of an earlier beneficial mutation, before the first mutation in the series can fix. We focus on the effects of such multiple mutations. RESULTS Our analysis predicts that the variation in fitness maintained by a continuously evolving population increases as the logarithm of the population size and logarithm of the mutation rate and thus yields a similar logarithmic increase in the speed of evolution. To test these predictions, we evolved asexual budding yeast in glucose-limited media at a range of population sizes and mutation rates. CONCLUSIONS We find that their evolution is dominated by the accumulation of multiple mutations of moderate effect. Our results agree with our theoretical predictions and are inconsistent with the one-by-one fixation of mutants assumed by recent clonal-interference analysis.


Genetics | 2011

Genetic Variation and the Fate of Beneficial Mutations in Asexual Populations

Gregory I. Lang; David Botstein; Michael M. Desai

The fate of a newly arising beneficial mutation depends on many factors, such as the population size and the availability and fitness effects of other mutations that accumulate in the population. It has proved difficult to understand how these factors influence the trajectories of particular mutations, since experiments have primarily focused on characterizing successful clones emerging from a small number of evolving populations. Here, we present the results of a massively parallel experiment designed to measure the full spectrum of possible fates of new beneficial mutations in hundreds of experimental yeast populations, whether these mutations are ultimately successful or not. Using strains in which a particular class of beneficial mutation is detectable by fluorescence, we followed the trajectories of these beneficial mutations across 592 independent populations for 1000 generations. We find that the fitness advantage provided by individual mutations plays a surprisingly small role. Rather, underlying “background” genetic variation is quickly generated in our initially clonal populations and plays a crucial role in determining the fate of each individual beneficial mutation in the evolving population.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations

Benjamin H. Good; Igor M. Rouzine; Daniel J. Balick; Oskar Hallatschek; Michael M. Desai

When large asexual populations adapt, competition between simultaneously segregating mutations slows the rate of adaptation and restricts the set of mutations that eventually fix. This phenomenon of interference arises from competition between mutations of different strengths as well as competition between mutations that arise on different fitness backgrounds. Previous work has explored each of these effects in isolation, but the way they combine to influence the dynamics of adaptation remains largely unknown. Here, we describe a theoretical model to treat both aspects of interference in large populations. We calculate the rate of adaptation and the distribution of fixed mutational effects accumulated by the population. We focus particular attention on the case when the effects of beneficial mutations are exponentially distributed, as well as on a more general class of exponential-like distributions. In both cases, we show that the rate of adaptation and the influence of genetic background on the fixation of new mutants is equivalent to an effective model with a single selection coefficient and rescaled mutation rate, and we explicitly calculate these effective parameters. We find that the effective selection coefficient exactly coincides with the most common fixed mutational effect. This equivalence leads to an intuitive picture of the relative importance of different types of interference effects, which can shift dramatically as a function of the population size, mutation rate, and the underlying distribution of fitness effects.


PLOS ONE | 2015

Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes

Michael H. Baym; Sergey Kryazhimskiy; Tami D. Lieberman; Hattie Chung; Michael M. Desai; Roy Kishony

Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of


Nature | 2016

Sex speeds adaptation by altering the dynamics of molecular evolution

Michael J. McDonald; Daniel P. Rice; Michael M. Desai

8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.


Genetics | 2008

Clonal Interference, Multiple Mutations, and Adaptation in Large Asexual Populations

Craig A. Fogle; James L. Nagle; Michael M. Desai

Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher–Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.


Current Biology | 2006

Ploidy Controls the Success of Mutators and Nature of Mutations during Budding Yeast Evolution

Dawn Anne Thompson; Michael M. Desai; Andrew W. Murray

Two important problems affect the ability of asexual populations to accumulate beneficial mutations and hence to adapt. First, clonal interference causes some beneficial mutations to be outcompeted by more-fit mutations that occur in the same genetic background. Second, multiple mutations occur in some individuals, so even mutations of large effect can be outcompeted unless they occur in a good genetic background that contains other beneficial mutations. In this article, we use a Monte Carlo simulation to study how these two factors influence the adaptation of asexual populations. We find that the results depend qualitatively on the shape of the distribution of the fitness effects of possible beneficial mutations. When this distribution falls off slower than exponentially, clonal interference alone reasonably describes which mutations dominate the adaptation, although it gives a misleading picture of the evolutionary dynamics. When the distribution falls off faster than exponentially, an analysis based on multiple mutations is more appropriate. Using our simulations, we are able to explore the limits of validity of both of these approaches, and we explore the complex dynamics in the regimes where neither one is fully applicable.


Nature | 2017

The dynamics of molecular evolution over 60,000 generations

Benjamin H. Good; Michael J. McDonald; Jeffrey E. Barrick; Richard E. Lenski; Michael M. Desai

BACKGROUND We used the budding yeast Saccharomyces cerevisiae to ask how elevated mutation rates affect the evolution of asexual eukaryotic populations. Mismatch repair defective and nonmutator strains were competed during adaptation to four laboratory environments (rich medium, low glucose, high salt, and a nonfermentable carbon source). RESULTS In diploids, mutators have an advantage over nonmutators in all conditions, and mutators that win competitions are on average fitter than nonmutator winners. In contrast, haploid mutators have no advantage when competed against haploid nonmutators, and haploid mutator winners are less fit than nonmutator winners. The diploid mutator winners were all superior to their ancestors both in the condition they had adapted to, and in two of the other conditions. This phenotype was due to a mutation or class of mutations that confers a large growth advantage during the respiratory phase of yeast cultures that precedes stationary phase. This generalist mutation(s) was not selected in diploid nonmutator strains or in haploid strains, which adapt primarily by fixing specialist (condition-specific) mutations. In diploid mutators, such mutations also occur, and the majority accumulates after the fixation of the generalist mutation. CONCLUSIONS We conclude that the advantage of mutators depends on ploidy and that diploid mutators can give rise to beneficial mutations that are inaccessible to nonmutators and haploid mutators.

Collaboration


Dive into the Michael M. Desai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua B. Plotkin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge