Michael M. Fogler
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael M. Fogler.
Science | 2014
Siyuan Dai; Zhe Fei; Qiong Ma; A. S. Rodin; M. Wagner; Alexander S. McLeod; M. K. Liu; Will Gannett; William Regan; Kenji Watanabe; Takashi Taniguchi; Mark H. Thiemens; G. Dominguez; A. H. Castro Neto; Alex Zettl; Fritz Keilmann; Pablo Jarillo-Herrero; Michael M. Fogler; D. N. Basov
Nanoimaged Polaritons Engineered heterostructures consisting of thin, weakly bound layers can exhibit many attractive electronic properties. Dai et al. (p. 1125) used infrared nanoimaging on the surface of hexagonal boron nitride crystals to detect phonon polaritons, collective modes that originate in the coupling of photons to optical phonons. The findings reveal the dependence of the polariton wavelength and dispersion on the thickness of the material down to just a few atomic layers. Infrared nanoimaging is used to detect a type of surface collective mode in a representative van der Waals crystal. van der Waals heterostructures assembled from atomically thin crystalline layers of diverse two-dimensional solids are emerging as a new paradigm in the physics of materials. We used infrared nanoimaging to study the properties of surface phonon polaritons in a representative van der Waals crystal, hexagonal boron nitride. We launched, detected, and imaged the polaritonic waves in real space and altered their wavelength by varying the number of crystal layers in our specimens. The measured dispersion of polaritonic waves was shown to be governed by the crystal thickness according to a scaling law that persists down to a few atomic layers. Our results are likely to hold true in other polar van der Waals crystals and may lead to new functionalities.
Nano Letters | 2011
Zhe Fei; G. O. Andreev; Wenzhong Bao; Lingfeng M. Zhang; Alexander S. McLeod; Chen Wang; Margaret K. Stewart; Zeng Zhao; G. Dominguez; Mark H. Thiemens; Michael M. Fogler; Michael J. Tauber; Antonio H. Castro-Neto; Chun Ning Lau; Fritz Keilmann; D. N. Basov
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO(2) substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.
Physical Review Letters | 1996
Alexei A. Koulakov; Michael M. Fogler; B. I. Shklovskii
We study the ground state of a clean two-dimensional electron liquid in a weak magnetic field where
Physical Review B | 2008
Lingfeng M. Zhang; Zhiqiang Li; D. N. Basov; Michael M. Fogler; Zhao Hao; Michael C. Martin
N\ensuremath{\gg}1
Science | 2016
D. N. Basov; Michael M. Fogler; F. J. García de Abajo
lower Landau levels are completely filled and the upper level is partially filled. It is shown that the electrons at the upper Landau level form domains with filling factors equal to 1 and zero. The domains alternate with a spatial period of order of the cyclotron radius, which is much larger than the interparticle distance at the upper Landau level. The one-particle density of states, which can be probed by tunneling experiments, is shown to have a gap linearly dependent on the magnetic field in the limit of large
Nature Communications | 2014
Michael M. Fogler; L. V. Butov; K. S. Novoselov
N
Physical Review Letters | 2008
Lingfeng M. Zhang; Michael M. Fogler
.
conference on lasers and electro optics | 2012
Alexander High; J. R. Leonard; A. T. Hammack; Michael M. Fogler; L. V. Butov; Alexey Kavokin; K. L. Campman; A. C. Gossard
We present an experimental study of the infrared conductivity, transmission, and reflection of a gated bilayer graphene and their theoretical analysis within the Slonczewski-Weiss-McClure (SWMc) model. The infrared response is shown to be governed by the interplay of the interband and the intraband transitions among the four bands of the bilayer. The position of the main conductivity peak at the charge-neutrality point is determined by the interlayer tunneling frequency. The shift of this peak as a function of the gate voltage gives information about less known parameters of the SWMc model such as those responsible for the electron-hole and sublattice asymmetries. These parameter values are shown to be consistent with recent electronic structure calculations for the bilayer graphene and the SWMc parameters commonly used for the bulk graphite.
Nano Letters | 2014
M. Wagner; Zhe Fei; Alexander S. McLeod; Aleksandr Rodin; Wenzhong Bao; Eric G. Iwinski; Zeng Zhao; Michael Goldflam; Mengkun Liu; G. Dominguez; Mark H. Thiemens; Michael M. Fogler; Antonio H. Castro Neto; Chun Ning Lau; Sergiu Amarie; Fritz Keilmann; D. N. Basov
BACKGROUND Light trapped at the nanoscale, deep below the optical wavelength, exhibits an increase in the associated electric field strength, which results in enhanced light-matter interaction. This leads to strong nonlinearities, large photonic forces, and enhanced emission and absorption probabilities. A practical approach toward nanoscale light trapping and manipulation is offered by interfaces separating media with permittivities of opposite signs. Such interfaces sustain hybrid light-matter modes involving collective oscillations of polarization charges in matter, hence the term polaritons. Surface plasmon polaritons, supported by electrons in metals, constitute a most-studied prominent example. Yet there are many other varieties of polaritons, including those formed by atomic vibrations in polar insulators, excitons in semiconductors, Cooper pairs in superconductors, and spin resonances in (anti)ferromagnets. Together, they span a broad region of the electromagnetic spectrum, ranging from microwave to ultraviolet wavelengths. We discuss polaritons in van der Waals (vdW) materials: layered systems in which individual atomic planes are bonded by weak vdW attraction (see the figure). This class of quantum materials includes graphene and other two-dimensional crystals. In artificial structures assembled from dissimilar vdW atomic layers, polaritons associated with different constituents can interact to produce unique optical effects by design. ADVANCES vdW materials host a full suite of different polaritonic modes with the highest degree of confinement among all known materials. Advanced near-field imaging methods allow the polaritonic waves to be launched and visualized as they travel along vdW layers or through multilayered heterostructures. Spectroscopic and nanoimaging experiments have identified multiple routes toward manipulation of nano-optical phenomena endowed by polaritons. A virtue of polaritons in vdW systems is their electrical tunability. Furthermore, in heterostructures assembled from dissimilar vdW layers, different brands of polaritons interact with each other, thus enabling unparalleled control of polaritonic response at the level of single atomic planes. New optoelectronic device concepts aimed at the detection, harvesting, emission, propagation, and modulation of light are becoming feasible as a result of combined synthesis, nanofabrication, and modeling of vdW systems. The extreme anisotropy of vdW systems leading to opposite signs of the in-plane and out-of-plane permittivities of the same layered crystal enables efficient polaritonic waveguides, which are instrumental for subdiffractional focusing and imaging. In addition to near-field optical probes facilitating nanoimaging, coupling to polaritons can be accomplished via electrical excitation and nonlinear wave mixing. OUTLOOK Potential outcomes of polariton exploration in vdW heterostructures go beyond nano-optical technologies. In particular, images of polaritonic standing and traveling waves contain rich insights into quantum phenomena occurring in the host material supporting polaritons. This line of inquiry into fundamental physics through polaritonic observations constitutes an approach toward optics-based materials research. In particular, the strong spatial confinement exhibited by vdW polaritons involves large optical-field gradients—or equivalently, large momenta—which allows regions of the dispersion relations of electrons, phonons, and other condensed-matter excitations to be accessed beyond what is currently possible with conventional optics. Additionally, polaritons created by short and intense laser pulses add femtosecond resolution to the study of these phenomena. Alongside future advances in the understanding of the physics and interactions of vdW polaritons, solutions to application challenges may be anticipated in areas such as loss compensation, nanoscale lasing, quantum optics, and nanomanipulation. The field of vdW polaritonics is ripe for exploring genuinely unique physical scenarios and exploiting these new phenomena in technology. Polaritons in van der Waals (vdW) materials. Polaritons—a hybrid of light-matter oscillations—can originate in different physical phenomena: conduction electrons in graphene and topological insulators (surface plasmon polaritons), infrared-active phonons in boron nitride (phonon polaritons), excitons in dichalcogenide materials (exciton polaritons), superfluidity in FeSe- and Cu-based superconductors with high critical temperature Tc (Cooper-pair polaritons), and magnetic resonances (magnon polaritons). The family of vdW materials supports all of these polaritons. The matter oscillation component results in negative permittivity (εB < 0) of the polaritonic material, giving rise to optical-field confinement at the interface with a positive-permittivity (εA > 0) environment. vdW polaritons exhibit strong confinement, as defined by the ratio of incident light wavelength λ0 to polariton wavelength λp. van der Waals (vdW) materials consist of individual atomic planes bonded by weak vdW attraction. They display nearly all optical phenomena found in solids, including plasmonic oscillations of free electrons characteristic of metals, light emission/lasing and excitons encountered in semiconductors, and intense phonon resonances typical of insulators. These phenomena are embodied in confined light-matter hybrid modes termed polaritons—excitations of polarizable media, which are classified according to the origin of the polarization. The most studied varieties are plasmon, phonon, and exciton polaritons. In vdW materials, polaritons exhibit extraordinary properties that are directly affected by dimensionality and topology, as revealed by state-of-the-art imaging of polaritonic waves. vdW heterostructures provide unprecedented control over the polaritonic response, enabling new quantum phenomena and nanophotonics applications.
Physical Review B | 2004
Michael M. Fogler; S. Teber; B. I. Shklovskii
All known superfluid and superconducting states of condensed matter are enabled by composite bosons (atoms, molecules and Cooper pairs) made of an even number of fermions. Temperatures where such macroscopic quantum phenomena occur are limited by the lesser of the binding energy and the degeneracy temperature of the bosons. High-critical temperature cuprate superconductors set the present record of ~100 K. Here we propose a design for artificially structured materials to rival this record. The main elements of the structure are two monolayers of a transition metal dichalcogenide separated by an atomically thin spacer. Electrons and holes generated in the system would accumulate in the opposite monolayers and form bosonic bound states--the indirect excitons. The resultant degenerate Bose gas of indirect excitons would exhibit macroscopic occupation of a quantum state and vanishing viscosity at high temperatures.