Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael M. Kozlov is active.

Publication


Featured researches published by Michael M. Kozlov.


Nature Structural & Molecular Biology | 2008

Mechanics of membrane fusion

Leonid V. Chernomordik; Michael M. Kozlov

Diverse membrane fusion reactions in biology involve close contact between two lipid bilayers, followed by the local distortion of the individual bilayers and reformation into a single, merged membrane. We consider the structures and energies of the fusion intermediates identified in experimental and theoretical work on protein-free lipid bilayers. On the basis of this analysis, we then discuss the conserved fusion-through-hemifusion pathway of merger between biological membranes and propose that the entire progression, from the close juxtaposition of membrane bilayers to the expansion of a fusion pore, is controlled by protein-generated membrane stresses.


Science | 2007

How synaptotagmin promotes membrane fusion

Sascha Martens; Michael M. Kozlov; Harvey T. McMahon

Synaptic vesicles loaded with neurotransmitters are exocytosed in a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)–dependent manner after presynaptic depolarization induces calcium ion (Ca2+) influx. The Ca2+ sensor required for fast fusion is synaptotagmin-1. The activation energy of bilayer-bilayer fusion is very high (≈40 kBT). We found that, in response to Ca2+ binding, synaptotagmin-1 could promote SNARE-mediated fusion by lowering this activation barrier by inducing high positive curvature in target membranes on C2-domain membrane insertion. Thus, synaptotagmin-1 triggers the fusion of docked vesicles by local Ca2+-dependent buckling of the plasma membrane together with the zippering of SNAREs. This mechanism may be widely used in membrane fusion.


Biophysical Journal | 2002

Stalk Model of Membrane Fusion: Solution of Energy Crisis

Yonathan Kozlovsky; Michael M. Kozlov

Membrane fusion proceeds via formation of intermediate nonbilayer structures. The stalk model of fusion intermediate is commonly recognized to account for the major phenomenology of the fusion process. However, in its current form, the stalk model poses a challenge. On one hand, it is able to describe qualitatively the modulation of the fusion reaction by the lipid composition of the membranes. On the other, it predicts very large values of the stalk energy, so that the related energy barrier for fusion cannot be overcome by membranes within a biologically reasonable span of time. We suggest a new structure for the fusion stalk, which resolves the energy crisis of the model. Our approach is based on a combined deformation of the stalk membrane including bending of the membrane surface and tilt of the hydrocarbon chains of lipid molecules. We demonstrate that the energy of the fusion stalk is a few times smaller than those predicted previously and the stalks are feasible in real systems. We account quantitatively for the experimental results on dependence of the fusion reaction on the lipid composition of different membrane monolayers. We analyze the dependence of the stalk energy on the distance between the fusing membranes and provide the experimentally testable predictions for the structural features of the stalk intermediates.


Cell | 2005

Membrane hemifusion: crossing a chasm in two leaps.

Leonid V. Chernomordik; Michael M. Kozlov

During membrane fusion, the outer leaflets of the two membranes merge first, whereas the distal membrane leaflets remain separate until the opening of a fusion pore. This intermediate stage, called hemifusion, is a critical event shared by exocytosis, protein trafficking, and viral entry.


Science | 2008

Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules

Junjie Hu; Yoko Shibata; Christiane Voss; Tom Shemesh; Zongli Li; Margaret Coughlin; Michael M. Kozlov; William A. Prinz

The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. When we purified yeast Yop1p and incorporated it into proteoliposomes, narrow tubules (∼15 to 17 nanometers in diameter) were generated. Tubule formation occurred with different lipids; required essentially only the central portion of the protein, including its two long hydrophobic segments; and was prevented by mutations that affected tubule formation in vivo. Tubules were also formed by reconstituted purified yeast Rtn1p. Tubules made in vitro were narrower than normal ER tubules, due to a higher concentration of tubule-inducing proteins. The shape and oligomerization of the “morphogenic” proteins could explain the formation of the tubular ER.


PLOS Pathogens | 2010

Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions

Victor Buzon; Ganesh Natrajan; David J. Schibli; Felix Campelo; Michael M. Kozlov; Winfried Weissenhorn

The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 Å resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90°-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies.


Biophysical Journal | 2002

Lipid Intermediates in Membrane Fusion: Formation, Structure, and Decay of Hemifusion Diaphragm

Yonathan Kozlovsky; Leonid V. Chernomordik; Michael M. Kozlov

Lipid bilayer fusion is thought to involve formation of a local hemifusion connection, referred to as a fusion stalk. The subsequent fusion stages leading to the opening of a fusion pore remain unknown. The earliest fusion pore could represent a bilayer connection between the membranes and could be formed directly from the stalk. Alternatively, fusion pore can form in a single bilayer, referred to as hemifusion diaphragm (HD), generated by stalk expansion. To analyze the plausibility of stalk expansion, we studied the pathway of hemifusion theoretically, using a recently developed elastic model. We show that the stalk has a tendency to expand into an HD for lipids with sufficiently negative spontaneous splay, (~)J(s)< 0. For different experimentally relevant membrane configurations we find two characteristic values of the spontaneous splay. (~)J*(s) and (~)J**(s), determining HD dimension. The HD is predicted to have a finite equilibrium radius provided that the spontaneous splay is in the range (~)J**(s)< (~)J(s)<(~)J*(s), and to expand infinitely for (~)J(s)<(~)J**(s). In the case of common lipids, which do not fuse spontaneously, an HD forms only under action of an external force pulling the diaphragm rim apart. We calculate the dependence of the HD radius on this force. To address the mechanism of fusion pore formation, we analyze the distribution of the lateral tension emerging in the HD due to the establishment of lateral equilibrium between the deformed and relaxed portions of lipid monolayers. We show that this tension concentrates along the HD rim and reaches high values sufficient to rupture the bilayer and form the fusion pore. Our analysis supports the hypothesis that transition from a hemifusion to a fusion pore involves radial expansion of the stalk.


Journal of Cell Biology | 2006

Membranes of the world unite

Leonid V. Chernomordik; Joshua Zimmerberg; Michael M. Kozlov

Despite diverse origins, cellular fusion mechanisms converge at a pathway of phospholipid bilayer fusion. In this mini-review, we discuss how proteins can mediate each of the three major stages in the fusion pathway: contact, hemifusion, and the opening of an expanding fusion pore.


Current Opinion in Cell Biology | 2010

Interplay of proteins and lipids in generating membrane curvature

Todd R. Graham; Michael M. Kozlov

The majority of intracellular membranes have strongly bent shapes with radii of curvature ranging from 20 to 50 nm. Many different proteins provide the substantial energy needed to generate and sustain this curvature. One of the most effective mechanisms of curvature creation is based on asymmetry of membrane monolayers. Proteins generate this asymmetry by flipping phospholipid across the membrane, modifying lipid molecules, or embedding their hydrophobic domains into the membrane matrix. We review the physical principles of these mechanisms of membrane bending and highlight the action of specific proteins driving vesicle-mediated transport. A model of clathrin-mediated vesicle budding from the trans-Golgi network is described to illustrate the interplay and mutual reinforcement of different mechanisms for generating membrane curvature.


Cell | 2010

Membrane Curvature in Synaptic Vesicle Fusion and Beyond

Harvey T. McMahon; Michael M. Kozlov; Sascha Martens

Recent evidence suggests that the Ca(2+)-sensors synaptotagmin-1 and Doc2b deform synaptic membranes during synaptic vesicle exocytosis. We discuss how local curvature generated by these and other proteins may stimulate membrane fusion and discuss the potential implications of these findings for other cellular fusion events.

Collaboration


Dive into the Michael M. Kozlov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander D. Bershadsky

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harvey T. McMahon

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge