Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael M. Mwangi is active.

Publication


Featured researches published by Michael M. Mwangi.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing

Michael M. Mwangi; Shang Wei Wu; Yanjiao Zhou; Krzysztof Sieradzki; Hermínia de Lencastre; Paul G. Richardson; David Bruce; Edward M. Rubin; Eugene W. Myers; Eric D. Siggia; Alexander Tomasz

The spread of multidrug-resistant Staphylococcus aureus (MRSA) strains in the clinical environment has begun to pose serious limits to treatment options. Yet virtually nothing is known about how resistance traits are acquired in vivo. Here, we apply the power of whole-genome sequencing to identify steps in the evolution of multidrug resistance in isogenic S. aureus isolates recovered periodically from the bloodstream of a patient undergoing chemotherapy with vancomycin and other antibiotics. After extensive therapy, the bacterium developed resistance, and treatment failed. Sequencing the first vancomycin susceptible isolate and the last vancomycin nonsusceptible isolate identified genome wide only 35 point mutations in 31 loci. These mutations appeared in a sequential order in isolates that were recovered at intermittent times during chemotherapy in parallel with increasing levels of resistance. The vancomycin nonsusceptible isolates also showed a 100-fold decrease in susceptibility to daptomycin, although this antibiotic was not used in the therapy. One of the mutated loci associated with decreasing vancomycin susceptibility (the vraR operon) was found to also carry mutations in six additional vancomycin nonsusceptible S. aureus isolates belonging to different genetic backgrounds and recovered from different geographic sites. As costs drop, whole-genome sequencing will become a useful tool in elucidating complex pathways of in vivo evolution in bacterial pathogens.


Nature Structural & Molecular Biology | 2011

Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA editing targets in transcript 3′ UTRs

Brad R. Rosenberg; Claire E. Hamilton; Michael M. Mwangi; Scott Dewell; F. Nina Papavasiliou

Apolipoprotein B–editing enzyme, catalytic polypeptide-1 (APOBEC1) is a cytidine deaminase initially identified by its activity in converting a specific cytidine (C) to uridine (U) in apolipoprotein B (apoB) mRNA transcripts in the small intestine. Editing results in the translation of a truncated apoB isoform with distinct functions in lipid transport. To address the possibility that APOBEC1 edits additional mRNAs, we developed a transcriptome-wide comparative RNA sequencing (RNA-Seq) screen. We identified and validated 32 previously undescribed mRNA targets of APOBEC1 editing, all of which are located in AU-rich segments of transcript 3′ untranslated regions (3′ UTRs). Further analysis established several characteristic sequence features of editing targets, which were predictive for the identification of additional APOBEC1 substrates. The transcriptomics approach to RNA editing presented here dramatically expands the list of APOBEC1 mRNA editing targets and reveals a novel cellular mechanism for the modification of transcript 3′ UTRs.


PLOS Pathogens | 2012

Genetic Pathway in Acquisition and Loss of Vancomycin Resistance in a Methicillin Resistant Staphylococcus aureus (MRSA) Strain of Clonal Type USA300

Susana Gardete; Choonkeun Kim; Boris M. Hartmann; Michael M. Mwangi; Christelle M. Roux; Paul M. Dunman; Henry F. Chambers; Alexander Tomasz

An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system.


Microbial Drug Resistance | 2013

Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus.

Michael M. Mwangi; Choonkeun Kim; Marilyn Chung; Jennifer Tsai; Govindan Vijayadamodar; Michelle Benitez; Thomas Jarvie; Lei Du; Alexander Tomasz

The overwhelming majority of methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates exhibit a peculiar heterogeneous resistance to β-lactam antibiotics: in cultures of such strains, the majority of cells display only a low level of methicillin resistance--often close to the MIC breakpoint of susceptible strains. Yet, in the same cultures, subpopulations of bacteria exhibiting very high levels of resistance are also present with variable frequencies, which are characteristic of the particular MRSA lineage. The mechanism of heterogeneous resistance is not understood. We describe here an experimental system for exploring the mechanism of heterogeneous resistance. Copies of the resistance gene mecA cloned into a temperature-sensitive plasmid were introduced into the fully sequenced methicillin-susceptible clinical isolate S. aureus strain 476. Transductants of strain 476 expressed methicillin resistance in a heterogeneous fashion: the great majority of cells showed only low MIC (0.75 μg/ml) for the antibiotic, but a minority population of highly resistant bacteria (MIC >300 μg/ml) was also present with a frequency of ∼10(-4). The genetic backgrounds of the majority and minority cells were compared by whole-genome sequencing: the only differences detectable were two point mutations in relA of the highly resistant minority population of bacteria. The relA gene codes for the synthesis of (p)ppGpp, an effector of the stringent stress response. Titration of (p)ppGpp showed increased amounts of this effector in the highly resistant cells. Involvement of (p)ppGpp synthesis genes may explain some of the perplexing aspects of β-lactam resistance in MRSA, since many environmental and genetic changes can modulate cellular levels of (p)ppGpp.


PLOS ONE | 2013

The Mechanism of Heterogeneous Beta-Lactam Resistance in MRSA: Key Role of the Stringent Stress Response

Choonkeun Kim; Michael M. Mwangi; Marilyn Chung; Catarina Milheirço; Hermínia de Lencastre; Alexander Tomasz

All methicillin resistant S. aureus (MRSA) strains carry an acquired genetic determinant – mecA or mecC - which encode for a low affinity penicillin binding protein –PBP2A or PBP2A′ – that can continue the catalysis of peptidoglycan transpeptidation in the presence of high concentrations of beta-lactam antibiotics which would inhibit the native PBPs normally involved with the synthesis of staphylococcal cell wall peptidoglycan. In contrast to this common genetic and biochemical mechanism carried by all MRSA strains, the level of beta-lactam antibiotic resistance shows a very wide strain to strain variation, the mechanism of which has remained poorly understood. The overwhelming majority of MRSA strains produce a unique – heterogeneous – phenotype in which the great majority of the bacteria exhibit very poor resistance often close to the MIC value of susceptible S. aureus strains. However, cultures of such heterogeneously resistant MRSA strains also contain subpopulations of bacteria with extremely high beta-lactam MIC values and the resistance level and frequency of the highly resistant cells in such strain is a characteristic of the particular MRSA clone. In the study described in this communication, we used a variety of experimental models to understand the mechanism of heterogeneous beta-lactam resistance. Methicillin-susceptible S. aureus (MSSA) that received the mecA determinant in the laboratory either on a plasmid or in the form of a chromosomal SCCmec cassette, generated heterogeneously resistant cultures and the highly resistant subpopulations that emerged in these models had increased levels of PBP2A and were composed of bacteria in which the stringent stress response was induced. Each of the major heterogeneously resistant clones of MRSA clinical isolates could be converted to express high level and homogeneous resistance if the growth medium contained an inducer of the stringent stress response.


PLOS ONE | 2016

Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia coli and Proposal for Adopting a New Nomenclature for O-Typing

Chitrita DebRoy; Pina M. Fratamico; Xianghe Yan; GianMarco Baranzoni; Yanhong Liu; David S. Needleman; Robert S. Tebbs; Catherine O'connell; Adam F. Allred; Michelle Swimley; Michael M. Mwangi; Vivek Kapur; Juan Antonio Raygoza Garay; Elisabeth Roberts; Robab Katani

Escherichia coli strains are classified based on O-antigens that are components of the lipopolysaccharide (LPS) in the cell envelope. O-antigens are important virulence factors, targets of both the innate and adaptive immune system, and play a role in host-pathogen interactions. Because they are highly immunogenic and display antigenic specificity unique for each strain, O-antigens are the biomarkers for designating O-types. Immunologically, 185 O-serogroups and 11 OX-groups exist for classification. Conventional serotyping for O-typing entails agglutination reactions between the O-antigen and antisera generated against each O-group. The procedure is labor intensive, not always accurate, and exhibits equivocal results. In this report, we present the sequences of 71 O-antigen gene clusters (O-AGC) and a comparison of all 196 O- and OX-groups. Many of the designated O-types, applied for classification over several decades, exhibited similar nucleotide sequences of the O-AGCs and cross-reacted serologically. Some O-AGCs carried insertion sequences and others had only a few nucleotide differences between them. Thus, based on these findings, it is proposed that several of the E. coli O-groups may be merged. Knowledge of the O-AGC sequences facilitates the development of molecular diagnostic platforms that are rapid, accurate, and reliable that can replace conventional serotyping. Additionally, with the scientific knowledge presented, new frontiers in the discovery of biomarkers, understanding the roles of O-antigens in the innate and adaptive immune system and pathogenesis, the development of glycoconjugate vaccines, and other investigations, can be explored.


PLOS ONE | 2015

Comparative Analysis of Super-Shedder Strains of Escherichia coli O157:H7 Reveals Distinctive Genomic Features and a Strongly Aggregative Adherent Phenotype on Bovine Rectoanal Junction Squamous Epithelial Cells

Rebecca Cote; Robab Katani; Matthew R. Moreau; Indira T. Kudva; Terrance M. Arthur; Chitrita DebRoy; Michael M. Mwangi; Istvan Albert; Juan Antonio Raygoza Garay; Lingling Li; Maria T. Brandl; Michelle Qiu Carter; Vivek Kapur

Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as “super-shedders” (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells.


Journal of Clinical Microbiology | 2015

Molecular Types of Methicillin-Resistant Staphylococcus aureus and Methicillin-Sensitive S. aureus Strains Causing Skin and Soft Tissue Infections and Nasal Colonization, Identified in Community Health Centers in New York City

Maria Pardos de la Gandara; Juan Antonio Raygoza Garay; Michael M. Mwangi; Jonathan N. Tobin; Amanda Tsang; Chamanara Khalida; Brianna D'Orazio; Rhonda G. Kost; Andrea Leinberger-Jabari; Cameron Coffran; Teresa H. Evering; Barry S. Coller; Shirish Balachandra; Tracie Urban; Claude Parola; Scott Salvato; Nancy Jenks; Daren Wu; Rhonda Burgess; Marilyn Chung; Hermínia de Lencastre; Alexander Tomasz

ABSTRACT In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most—46 of the 63–wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL+) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Stochastic expression and epigenetic memory at the yeast HO promoter

Qian Zhang; Youngdae Yoon; Yaxin Yu; Emily J. Parnell; Juan Antonio Raygoza Garay; Michael M. Mwangi; Frederick R. Cross; David J. Stillman; Lu Bai

Eukaryotic gene regulation usually involves sequence-specific transcription factors and sequence-nonspecific cofactors. A large effort has been made to understand how these factors affect the average gene expression level among a population. However, little is known about how they regulate gene expression in individual cells. In this work, we address this question by mutating multiple factors in the regulatory pathway of the yeast HO promoter (HOpr) and probing the corresponding promoter activity in single cells using time-lapse fluorescence microscopy. We show that the HOpr fires in an “on/off” fashion in WT cells as well as in different genetic backgrounds. Many chromatin-related cofactors that affect the average level of HO expression do not actually affect the firing amplitude of the HOpr; instead, they affect the firing frequency among individual cell cycles. With certain mutations, the bimodal expression exhibits short-term epigenetic memory across the mitotic boundary. This memory is propagated in “cis” and reflects enhanced activator binding after a previous “on” cycle. We present evidence that the memory results from slow turnover of the histone acetylation marks.


Nucleic Acids Research | 2015

Decoupling of divergent gene regulation by sequence-specific DNA binding factors

Chao Yan; Juan Antonio Raygoza Garay; Michael M. Mwangi; Lu Bai

Divergent gene pairs (DGPs) are abundant in eukaryotic genomes. Since two genes in a DGP potentially share the same regulatory sequence, one might expect that they should be co-regulated. However, an inspection of yeast DGPs containing cell-cycle or stress response genes revealed that most DGPs are differentially-regulated. The mechanism underlying DGP differential regulation is not understood. Here, we showed that co- versus differential regulation cannot be explained by genetic features including promoter length, binding site orientation, TATA elements, nucleosome distribution, or presence of non-coding RNAs. Using time-lapse fluorescence microscopy, we carried out an in-depth study of a differentially regulated DGP, PFK26-MOB1. We found that their differential regulation is mainly achieved through two DNA-binding factors, Tbf1 and Mcm1. Similar to ‘enhancer-blocking insulators’ in higher eukaryotes, these factors shield the proximal promoter from the action of more distant transcription regulators. We confirmed the blockage function of Tbf1 using synthetic promoters. We further presented evidence that the blockage mechanism is widely used among genome-wide DGPs. Besides elucidating the DGP regulatory mechanism, our work revealed a novel class of insulators in yeast.

Collaboration


Dive into the Michael M. Mwangi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingling Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Rebecca Cote

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Robab Katani

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Vivek Kapur

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Chitrita DebRoy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grant L. Hughes

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge