Michael M. Plichta
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael M. Plichta.
NeuroImage | 2012
Urs Braun; Michael M. Plichta; Christine Esslinger; Carina Sauer; Leila Haddad; Oliver Grimm; Daniela Mier; Sebastian Mohnke; Andreas Heinz; Susanne Erk; Henrik Walter; Nina Y. Seiferth; Peter Kirsch; Andreas Meyer-Lindenberg
Characterizing the brain connectome using neuroimaging data and measures derived from graph theory emerged as a new approach that has been applied to brain maturation, cognitive function and neuropsychiatric disorders. For a broad application of this method especially for clinical populations and longitudinal studies, the reliability of this approach and its robustness to confounding factors need to be explored. Here we investigated test-retest reliability of graph metrics of functional networks derived from functional magnetic resonance imaging (fMRI) recorded in 33 healthy subjects during rest. We constructed undirected networks based on the Anatomic-Automatic-Labeling (AAL) atlas template and calculated several commonly used measures from the field of graph theory, focusing on the influence of different strategies for confound correction. For each subject, method and session we computed the following graph metrics: clustering coefficient, characteristic path length, local and global efficiency, assortativity, modularity, hierarchy and the small-worldness scalar. Reliability of each graph metric was assessed using the intraclass correlation coefficient (ICC). Overall ICCs ranged from low to high (0 to 0.763) depending on the method and metric. Methodologically, the use of a broader frequency band (0.008-0.15 Hz) yielded highest reliability indices (mean ICC=0.484), followed by the use of global regression (mean ICC=0.399). In general, the second order metrics (small-worldness, hierarchy, assortativity) studied here, tended to be more robust than first order metrics. In conclusion, our study provides methodological recommendations which allow the computation of sufficiently robust markers of network organization using graph metrics derived from fMRI data at rest.
Biological Psychiatry | 2009
Michael M. Plichta; Nenad Vasic; Robert Christian Wolf; Klaus-Peter Lesch; Dagmar Brummer; Christian Jacob; Andreas J. Fallgatter; Georg Grön
BACKGROUND Dysfunctional reward processing, accompanied by a limited ability to tolerate reward delays, has been proposed as an important feature in attention-deficit/hyperactivity disorder (ADHD). METHODS Using functional magnetic resonance imaging (fMRI), brain activation in adult patients with ADHD (n=14) and healthy control subjects (n=12) was examined during a series of choices between two monetary reward options that varied by delay to delivery. RESULTS Compared with healthy control subjects, hyporesponsiveness of the ventral-striatal reward system was replicated in patients with ADHD and was evident for both immediate and delayed rewards. In contrast, delayed rewards evoked hyperactivation in dorsal caudate nucleus and amygdala of ADHD patients. In both structures, neural activity toward delayed rewards was significantly correlated with self-rated ADHD symptom severity. CONCLUSIONS The finding of ventral-striatal hyporesponsiveness during immediate and delayed reward processing in patients with ADHD further strengthens the concept of a diminished neural processing of rewards in ADHD. Hyperactivation during delayed reward processing, gradually increasing along the ventral-to-dorsal extension of the caudate nucleus, and especially the concomitant hyperactivation of the amygdala are in accordance with predictions of the delay aversion hypothesis.
NeuroImage | 2007
Michael M. Plichta; Sebastian Heinzel; A.-C. Ehlis; Paul Pauli; Andreas J. Fallgatter
To validate the usefulness of a model-based analysis approach according to the general linear model (GLM) for functional near-infrared spectroscopy (fNIRS) data, a rapid event-related paradigm with an unpredictable stimulus sequence was applied to 15 healthy subjects. A parametric design was chosen wherein four differently graded contrasts of a flickering checkerboard were presented, allowing directed hypotheses about the rank order of the evoked hemodynamic response amplitudes. The results indicate the validity of amplitude estimation by three main findings (a) the GLM approach for fNIRS data is capable to identify human brain activation in the visual cortex with inter-stimulus intervals of 4-9 s (6.5 s average) whereas in non-visual areas no systematic activation was detectable; (b) the different contrast level intensities lead to the hypothesized rank order of the GLM amplitude parameters: visual cortex activation evoked by highest contrast>moderate contrast>lowest contrast>no stimulation; (c) analysis of null-events (no stimulation) did not produce any significant activation in the visual cortex or in other brain areas. We conclude that a model-based GLM approach delivers valid fNIRS amplitude estimations and enables the analysis of rapid event-related fNIRS data series, which is highly relevant in particular for cognitive fNIRS studies.
NeuroImage | 2012
Michael M. Plichta; Adam J. Schwarz; Oliver Grimm; Katrin Morgen; Daniela Mier; Leila Haddad; Antje B. M. Gerdes; Carina Sauer; Heike Tost; Christine Esslinger; Peter Colman; Frederick Wilson; Peter Kirsch; Andreas Meyer-Lindenberg
Even more than in cognitive research applications, moving fMRI to the clinic and the drug development process requires the generation of stable and reliable signal changes. The performance characteristics of the fMRI paradigm constrain experimental power and may require different study designs (e.g., crossover vs. parallel groups), yet fMRI reliability characteristics can be strongly dependent on the nature of the fMRI task. The present study investigated both within-subject and group-level reliability of a combined three-task fMRI battery targeting three systems of wide applicability in clinical and cognitive neuroscience: an emotional (face matching), a motivational (monetary reward anticipation) and a cognitive (n-back working memory) task. A group of 25 young, healthy volunteers were scanned twice on a 3T MRI scanner with a mean test-retest interval of 14.6 days. FMRI reliability was quantified using the intraclass correlation coefficient (ICC) applied at three different levels ranging from a global to a localized and fine spatial scale: (1) reliability of group-level activation maps over the whole brain and within targeted regions of interest (ROIs); (2) within-subject reliability of ROI-mean amplitudes and (3) within-subject reliability of individual voxels in the target ROIs. Results showed robust evoked activation of all three tasks in their respective target regions (emotional task=amygdala; motivational task=ventral striatum; cognitive task=right dorsolateral prefrontal cortex and parietal cortices) with high effect sizes (ES) of ROI-mean summary values (ES=1.11-1.44 for the faces task, 0.96-1.43 for the reward task, 0.83-2.58 for the n-back task). Reliability of group level activation was excellent for all three tasks with ICCs of 0.89-0.98 at the whole brain level and 0.66-0.97 within target ROIs. Within-subject reliability of ROI-mean amplitudes across sessions was fair to good for the reward task (ICCs=0.56-0.62) and, dependent on the particular ROI, also fair-to-good for the n-back task (ICCs=0.44-0.57) but lower for the faces task (ICC=-0.02-0.16). In conclusion, all three tasks are well suited to between-subject designs, including imaging genetics. When specific recommendations are followed, the n-back and reward task are also suited for within-subject designs, including pharmaco-fMRI. The present study provides task-specific fMRI reliability performance measures that will inform the optimal use, powering and design of fMRI studies using comparable tasks.
NeuroImage | 2008
Martin Schecklmann; A.-C. Ehlis; Michael M. Plichta; Andreas J. Fallgatter
The present study investigated the short- and long-term retest reliability of brain activity measured with functional near-infrared spectroscopy (fNIRS) during verbal fluency, the most published cognitive task within fNIRS literature. We examined 15 healthy right handed subjects in a block design task with retest intervals of three weeks and one year. Performance was constant over time. Amplitude of brain activation, as indicated by increases of oxygenated (O(2)Hb) and total (totHb) and decreases of deoxygenated haemoglobin (HHb), was reduced at session two and reversed at the third session for the fluency related region of interest (ROI). Small decreases for session two and three were found outside the ROI. These changes in amplitude may contribute to variability of reproducibility as measured with intraclass correlation coefficients (ICCs) within the ROI. Acceptable reliability for all chromophores and comparisons was reached for the mean of repeated measures at cluster level. Spatial (size and localisation), temporal and whole probe set activity was completely acceptable without exception. Retest reliability was not satisfactory at single subject and single channel level. Amplitude decreases over time outside the ROI suggest higher physiological or arousal effects for session one. Amplitude recovery in the ROI in session three argues for a psychological effect. Overall our findings indicate that fNIRS analyses at single subject and single channel level should be interpreted cautiously, while group and cluster analyses have sufficient test retest reliability.
Human Brain Mapping | 2009
Robert Christian Wolf; Michael M. Plichta; Andreas J. Fallgatter; Christian Jacob; Klaus-Peter Lesch; Martin J. Herrmann; Carlos Schönfeldt-Lecuona; Bernhard J. Connemann; Georg Grön; Nenad Vasic
Previous studies on working memory (WM) function in adults with attention‐deficit/hyperactivity disorder (ADHD) suggested aberrant activation of the prefrontal cortex and the cerebellum. Although it has been hypothesized that activation differences in these regions most likely reflect aberrant frontocerebellar circuits, the functional coupling of these brain networks during cognitive performance has not been investigated so far. In this study, functional magnetic resonance imaging (fMRI) and both univariate and multivariate analytic techniques were used to investigate regional activation changes and functional connectivity differences during cognitive processing in healthy controls (n = 12) and ADHD adults (n = 12). Behavioral performance during a parametric verbal WM paradigm did not significantly differ between adults with ADHD and healthy controls. During the delay period of the activation task, however, ADHD patients showed significantly less activation in the left ventrolateral prefrontal cortex (VLPFC), as well as in cerebellar and occipital regions compared with healthy control subjects. In both groups, independent component analyses revealed a functional network comprising bilateral lateral prefrontal, striatal, and cingulate regions. ADHD adults had significantly lower connectivity in the bilateral VLPFC, the anterior cingulate cortex, the superior parietal lobule, and the cerebellum compared with healthy controls. Increased connectivity in ADHD adults was found in right prefrontal regions, the left dorsal cingulate cortex and the left cuneus. These findings suggest both regional brain activation deficits and functional connectivity changes of the VLPFC and the cerebellum as well as functional connectivity abnormalities of the anterior cingulate and the parietal cortex in ADHD adults during WM processing. Hum Brain Mapp, 2009.
NeuroImage | 2014
Hengyi Cao; Michael M. Plichta; Axel Schäfer; Leila Haddad; Oliver Grimm; Michael Schneider; Christine Esslinger; Peter Kirsch; Andreas Meyer-Lindenberg; Heike Tost
The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies.
NeuroImage | 2009
Tim Hahn; Thomas Dresler; A.-C. Ehlis; Michael M. Plichta; Sebastian Heinzel; Thomas Polak; Klaus-Peter Lesch; Felix A. Breuer; Peter M. Jakob; Andreas J. Fallgatter
According to the Reinforcement Sensitivity Theory (RST), Grays dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Grays impulsivity as defined by the RST and event-related fMRI BOLD-response to anticipation of reward in twenty healthy human subjects in brain regions previously associated with reward processing. Anticipation of reward during a Monetary Incentive Delay Task elicited activation in key components of the human reward circuitry such as the ventral striatum, the amygdala and the orbitofrontal cortex. Interindividual differences in Grays impulsivity accounted for a significant amount of variance of the reward-related BOLD-response in the ventral striatum and the orbitofrontal cortex. Specifically, higher trait reward sensitivity was associated with increased activation in response to cues indicating potential reward. Extending previous evidence, here we show that variance in functional brain activation during anticipation of reward is attributed to interindividual differences regarding Grays dimension of impulsivity. Thus, trait reward sensitivity contributes to the modulation of responsiveness in major components of the human reward system which thereby display a core property of the BAS. Generally, fostering our understanding of the neural underpinnings of the association of reward-related interindividual differences in affective traits might aid researchers in quest for custom-tailored treatments of psychiatric disorders, further disentangling the complex relationship between personality traits, emotion, and health.
Psychiatry Research-neuroimaging | 2007
Ann-Christine Ehlis; Martin J. Herrmann; Michael M. Plichta; Andreas J. Fallgatter
Near-infrared spectroscopy (NIRS) is an optical imaging method that allows non-invasive in-vivo measurements of changes in the concentration of oxygenated (O(2)Hb) and deoxygenated (HHb) hemoglobin in brain tissue. For the present study, we examined 12 schizophrenic patients and 12 age- and gender-matched healthy controls by means of multi-channel NIRS (Optical Topography; ETG-100, Hitachi Medical Co., Japan) during performance of two versions of the Verbal Fluency Test (VFT; letter and category version). The results indicate that the verbal fluency tasks generally led to clear frontal activation in healthy controls, which was significantly reduced in schizophrenic patients. The letter version of the VFT induced overall stronger activation than the category version, the group difference being particularly pronounced for phonological fluency. Moreover, significant positive correlations between task-related activation effects in prefrontal and temporal NIRS channels were found in both schizophrenic patients and healthy controls. The results confirm functional deficits within the frontal lobe in patients suffering from schizophrenic illnesses, but do not confirm previous findings on abnormal fronto-temporal correlations or increased temporal activation in this group of patients. The data furthermore underline the usefulness of functional NIRS in monitoring hemodynamic responses associated with cognitive processes in healthy controls and patients with neuro-psychiatric disorders.
Human Brain Mapping | 2008
Martin J. Herrmann; Theresa Huter; Michael M. Plichta; A.-C. Ehlis; Georg W. Alpers; Andreas Mühlberger; Andreas J. Fallgatter
In this study we investigated whether event‐related near‐infrared spectroscopy (NIRS) is suitable to measure changes in brain activation of the occipital cortex modulated by the emotional content of the visual stimuli. As we found in a previous pilot study that only positive but not negative stimuli differ from neutral stimuli (with respect to oxygenated haemoglobin), we now measured the event‐related EEG potentials and NIRS simultaneously during the same session. Thereby, we could evaluate whether the subjects (n = 16) processed the positive as well as the negative emotional stimuli in a similar way. During the task, the subjects passively viewed positive, negative, and neutral emotional pictures (40 presentations were shown in each category, and pictures were taken from the International Affective Picture System, IAPS). The stimuli were presented for 3 s in a randomized order (with a mean of 3 s interstimulus interval). During the task, we measured the event‐related EEG potentials over the electrode positions O1, Oz, O2, and Pz and the changes of oxygenated and deoxygenated haemoglobin by multichannel NIRS over the occipital cortex. The EEG results clearly show an increased early posterior negativity over the occipital cortex for both positive as well as negative stimuli compared to neutral. The results for the NIRS measurement were less clear. Although positive as well as negative stimuli lead to significantly higher decrease in deoxygenated haemoglobin than neutral stimuli, this was not found for the oxygenated haemoglobin. Hum Brain Mapp 29:28–35, 2008.