Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael M. Tunney is active.

Publication


Featured researches published by Michael M. Tunney.


American Journal of Respiratory and Critical Care Medicine | 2008

Detection of Anaerobic Bacteria in High Numbers in Sputum from Patients with Cystic Fibrosis

Michael M. Tunney; Tyler R. Field; T.F. Moriarty; Sheila Patrick; Gerd Doering; Marianne S. Muhlebach; Matthew C. Wolfgang; Richard C. Boucher; D.F. Gilpin; Andrew McDowell; J. Stuart Elborn

RATIONALE Pulmonary infection in cystic fibrosis (CF) is polymicrobial and it is possible that anaerobic bacteria, not detected by routine aerobic culture methods, reside within infected anaerobic airway mucus. OBJECTIVES To determine whether anaerobic bacteria are present in the sputum of patients with CF. METHODS Sputum samples were collected from clinically stable adults with CF and bronchoalveolar lavage fluid (BALF) samples from children with CF. Induced sputum samples were collected from healthy volunteers who did not have CF. All samples were processed using anaerobic bacteriologic techniques and bacteria within the samples were quantified and identified. MEASUREMENTS AND MAIN RESULTS Anaerobic species primarily within the genera Prevotella, Veillonella, Propionibacterium, and Actinomyces were isolated in high numbers from 42 of 66 (64%) sputum samples from adult patients with CF. Colonization with Pseudomonas aeruginosa significantly increased the likelihood that anaerobic bacteria would be present in the sputum. Similar anaerobic species were identified in BALF from pediatric patients with CF. Although anaerobes were detected in induced sputum samples from 16 of 20 volunteers, they were present in much lower numbers and were generally different species compared with those detected in CF sputum. Species-dependent differences in the susceptibility of the anaerobes to antibiotics with known activity against anaerobes were apparent with all isolates susceptible to meropenem. CONCLUSIONS A range of anaerobic species are present in large numbers in the lungs of patients with CF. If these anaerobic bacteria are contributing significantly to infection and inflammation in the CF lung, informed alterations to antibiotic treatment to target anaerobes, in addition to the primary infecting pathogens, may improve management.


PLOS ONE | 2012

The Adult Cystic Fibrosis Airway Microbiota Is Stable over Time and Infection Type, and Highly Resilient to Antibiotic Treatment of Exacerbations

Anthony A. Fodor; Erich Klem; D.F. Gilpin; J. Stuart Elborn; Richard C. Boucher; Michael M. Tunney; Matthew C. Wolfgang

Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.


Biomaterials | 2003

Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials

Gordon Ramage; Michael M. Tunney; Sheila Patrick; Sean Gorman; James R. Nixon

Failure to treat and eradicate prosthetic hip infection with systemic antibiotic regimens is usually due to the fact that the infection is associated with biofilm formation and that bacterial cells growing within a biofilm exhibit increased resistance to antimicrobial agents. In this in vitro study, we investigated the susceptibility of prosthetic hip Propionibacterium acnes and Staphylococcus spp. isolates growing within biofilms on polymethylmethacrylate (PMMA) bone cement to a range of antibiotics. All P. acnes isolates in the biofilm mode of growth demonstrated considerably greater resistance to cefamandole, ciprofloxacin and vancomycin. In contrast, only four of the eight P. acnes isolates demonstrated an increase in resistance to gentamicin. All ten Staphylococcus spp. isolates in the biofilm mode of growth exhibited large increases in resistance to gentamicin and cefamandole with eight of the ten isolates also exhibiting an increase in resistance to vancomycin. However, only three of the ten Staphylococcus spp. isolates exhibited an increase in resistance to ciprofloxacin. Biofilms were also formed on three different titanium alloys and on PMMA bone cement using P. acnes, Staphylococcus epidermidis and Staphylococcus aureus strains to determine if the underlying biomaterial surface had an effect on biofilm formation and the antimicrobial susceptibility of the bacteria growing within biofilms. Although differences in the rate at which the three strains adhered to the different biomaterials were apparent, no differences in biofilm antibiotic resistance between the biomaterials were observed. In the light of these results, it is important that the efficacy of other antibiotics against P. acnes and Staphylococcus spp. prosthetic hip isolates growing within biofilms on orthopaedic biomaterials be determined to ensure optimal treatment of orthopaedic implant infection.


American Journal of Respiratory and Critical Care Medicine | 2013

Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation.

Michael M. Tunney; G.G. Einarsson; Lan Wei; M. Drain; Erich Klem; Christopher Cardwell; Madeleine Ennis; Richard C. Boucher; Matthew C. Wolfgang; J. Stuart Elborn

RATIONALE Characterization of bacterial populations in infectious respiratory diseases will provide improved understanding of the relationship between the lung microbiota, disease pathogenesis, and treatment outcomes. OBJECTIVES To comprehensively define lung microbiota composition during stable disease and exacerbation in patients with bronchiectasis. METHODS Sputum was collected from patients when clinically stable and before and after completion of antibiotic treatment of exacerbations. Bacterial abundance and community composition were analyzed using anaerobic culture and 16S rDNA pyrosequencing. MEASUREMENTS AND MAIN RESULTS In clinically stable patients, aerobic and anaerobic bacteria were detected in 40 of 40 (100%) and 33 of 40 (83%) sputum samples, respectively. The dominant organisms cultured were Pseudomonas aeruginosa (n = 10 patients), Haemophilus influenzae (n = 12), Prevotella (n = 18), and Veillonella (n = 13). Pyrosequencing generated more than 150,000 sequences, representing 113 distinct microbial taxa; the majority of observed community richness resulted from taxa present in low abundance with similar patterns of phyla distribution in clinically stable patients and patients at the onset of exacerbation. After treatment of exacerbation, there was no change in total (P = 0.925), aerobic (P = 0.917), or anaerobic (P = 0.683) load and only a limited shift in community composition. Agreement for detection of bacteria by culture and pyrosequencing was good for aerobic bacteria such as P. aeruginosa (κ = 0.84) but poorer for other genera including anaerobes. Lack of agreement was largely due to bacteria being detected by pyrosequencing but not by culture. CONCLUSIONS A complex microbiota is present in the lungs of patients with bronchiectasis and remains stable through treatment of exacerbations, suggesting that changes in microbiota composition do not account for exacerbations.


Journal of Clinical Microbiology | 2005

Propionibacterium acnes Types I and II Represent Phylogenetically Distinct Groups

Andrew McDowell; Susanna Valanne; Gordon Ramage; Michael M. Tunney; Josephine V. Glenn; Gregory McLorinan; Ajay Bhatia; Jean-Francois L. Maisonneuve; Michael J. Lodes; David H. Persing; Sheila Patrick

ABSTRACT Although two phenotypes of the opportunistic pathogen Propionibacterium acnes (types I and II) have been described, epidemiological investigations of their roles in different infections have not been widely reported. Using immunofluorescence microscopy with monoclonal antibodies (MAbs) QUBPa1 and QUBPa2, specific for types I and II, respectively, we investigated the prevalences of the two types among 132 P. acnes isolates. Analysis of isolates from failed prosthetic hip implants (n = 40) revealed approximately equal numbers of type I and II organisms. Isolates from failed prosthetic hip-associated bone (n = 6) and tissue (n = 38) samples, as well as isolates from acne (n = 22), dental infections (n = 8), and skin removed during surgical incision (n = 18) were predominately of type I. A total of 11 (8%) isolates showed atypical MAb labeling and could not be conclusively identified. Phylogenetic analysis of P. acnes by nucleotide sequencing revealed the 16S rRNA gene to be highly conserved between types I and II. In contrast, sequence analysis of recA and a putative hemolysin gene (tly) revealed significantly greater type-specific polymorphisms that corresponded to phylogenetically distinct cluster groups. All 11 isolates with atypical MAb labeling were identified as type I by sequencing. Within the recA and tly phylogenetic trees, nine of these isolates formed a cluster distinct from other type I organisms, suggesting a further phylogenetic subdivision within type I. Our study therefore demonstrates that the phenotypic differences between P. acnes types I and II reflect deeper differences in their phylogeny. Furthermore, nucleotide sequencing provides an accurate method for identifying the type status of P. acnes isolates.


Thorax | 2011

Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis

Michael M. Tunney; Erich Klem; Anthony A. Fodor; D.F. Gilpin; T.F. Moriarty; S. McGrath; Marianne S. Muhlebach; Richard C. Boucher; C Cardwell; Gerd Doering; J.S. Elborn; Matthew C. Wolfgang

Background Anaerobic bacteria are increasingly regarded as important in cystic fibrosis (CF) pulmonary infection. The aim of this study was to determine the effect of antibiotic treatment on aerobic and anaerobic microbial community diversity and abundance during exacerbations in patients with CF. Methods Sputum was collected at the start and completion of antibiotic treatment of exacerbations and when clinically stable. Bacteria were quantified and identified following culture, and community composition was also examined using culture-independent methods. Results Pseudomonas aeruginosa or Burkholderia cepacia complex were detected by culture in 24/26 samples at the start of treatment, 22/26 samples at completion of treatment and 11/13 stable samples. Anaerobic bacteria were detected in all start of treatment and stable samples and in 23/26 completion of treatment samples. Molecular analysis showed greater bacterial diversity within sputum samples than was detected by culture; there was reasonably good agreement between the methods for the presence or absence of aerobic bacteria such as P aeruginosa (κ=0.74) and B cepacia complex (κ=0.92), but agreement was poorer for anaerobes. Both methods showed that the composition of the bacterial community varied between patients but remained relatively stable in most individuals despite treatment. Bacterial abundance decreased transiently following treatment, with this effect more evident for aerobes (median decrease in total viable count 2.3×107 cfu/g, p=0.005) than for anaerobes (median decrease in total viable count 3×106 cfu/g, p=0.046). Conclusion Antibiotic treatment targeted against aerobes had a minimal effect on abundance of anaerobes and community composition, with both culture and molecular detection methods required for comprehensive characterisation of the microbial community in the CF lung. Further studies are required to determine the clinical significance of and optimal treatment for these newly identified bacteria.


Journal of Bone and Joint Surgery-british Volume | 1998

Improved detection of infection in hip replacements

Michael M. Tunney; Sheila Patrick; Sean Gorman; James R. Nixon; Neil Anderson; Richard I. Davis; Donna Hanna; Gordon Ramage

Our aim was to determine if the detection rate of infection of total hip replacements could be improved by examining the removed prostheses. Immediate transfer of prostheses to an anaerobic atmosphere, followed by mild ultrasonication to dislodge adherent bacteria, resulted in the culture of quantifiable numbers of bacteria, from 26 of the 120 implants examined. The same bacterial species were cultured by routine microbiological techniques from only five corresponding tissue samples. Tissue removed from 18 of the culture-positive implants was suitable for quantitative tissue pathology and inflammatory cells were present in all samples. Furthermore, inflammatory cells were present in 87% of tissue samples taken from patients whose implants were culture-negative. This suggests that these implants may have been infected by bacteria which were not isolated by the techniques of culture used. The increased detection of bacteria from prostheses by culture has improved postoperative antibiotic therapy and should reduce the need for further revision.


Biomaterials | 2002

Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use

Michael M. Tunney; Sean Gorman

The associated problems of bacterial biofilm formation and encrustation that may cause obstruction or blockage of urethral catheters and ureteral stents often hinders the effective use of biomaterials within the urinary tract. In this in vitro study, we have investigated the surface properties of a hydrophilic poly(vinyl pyrollidone) (PVP)-coating applied to polyurethane and determined its suitability for use as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of uncoated polyurethane and silicone. The PVP-coated polyurethane was significantly more hydrophilic and more lubricious than either uncoated polyurethane or silicone. Adherence of a hydrophilic Escherichia coli isolate to PVP-coated polyurethane and uncoated polyurethane was similar but significantly less than adherence to silicone. Adherence of a hydrophobic Enterococcus faecalis isolate to PVP-coated polyurethane and silicone was similar but was significantly less than adherence to uncoated polyurethane. Struvite encrustation was similar on the PVP-coated polyurethane and silicone but significantly less than on uncoated polyurethane. Furthermore, hydroxyapatite encrustation was significantly less on the PVP-coated polyurethane than on either uncoated polyurethane or silicone. The results suggest that the PVP-coating could be useful in preventing complications caused by bacterial biofilm formation and the deposition of encrustation on biomaterials implanted in the urinary tract and, therefore, warrants further evaluation.


Biomaterials | 1996

Comparative assessment of ureteral stent biomaterial encrustation

Michael M. Tunney; P.F. Keane; David S. Jones; Sean Gorman

Long-term use of ureteral stents is hindered by the inherent problem of biomaterial encrustation which may lead to stone formation and attendant problems. The wide variety of polymeric biomaterials currently used for stent fabrication suggests that no single material is significantly superior to the others at resisting encrustation. A model representing upper urinary tract conditions was employed to compare the long-term struvite and hydroxyapatite encrustation of five materials currently used in the fabrication of ureteral stents. Silicone was least prone to struvite encrustation, followed by polyurethane, silitek, percuflex and hydrogel-coated polyurethane, in rank order. Similarly, silicone was least prone to hydroxyapatite encrustation, followed by silitek, polyurethane, percuflex and hydrogel-coated polyurethane. This study has shown that the problem of encrustation may limit the long-term use of ureteral stent biomaterials and suggests directions for improvement of biomaterials in this regard.


Antimicrobial Agents and Chemotherapy | 2004

Rapid Colorimetric Assay for Antimicrobial Susceptibility Testing of Pseudomonas aeruginosa

Michael M. Tunney; Gordon Ramage; Tyler R. Field; T.F. Moriarty; Douglas G. Storey

ABSTRACT A colorimetric assay based on the reduction of a tetrazolium salt {2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT)} for rapidly determining the susceptibility of Pseudomonas aeruginosa isolates to bactericidal antibiotics is described. There was excellent agreement between the tobramycin and ofloxacin MICs determined after 5 h using the XTT assay and after 18 h using conventional methods. The data suggests that an XTT-based assay could provide a useful method for rapidly determining the susceptibility of P. aeruginosa to bactericidal antibiotics.

Collaboration


Dive into the Michael M. Tunney's collaboration.

Top Co-Authors

Avatar

J.S. Elborn

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

D.F. Gilpin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

S. McGrath

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

J. Stuart Elborn

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

G.G. Einarsson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Marianne S. Muhlebach

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

L. McIlreavey

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

L. Sherrard

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Judy Bradley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Ryan F. Donnelly

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge