Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Mazourek is active.

Publication


Featured researches published by Michael Mazourek.


Theoretical and Applied Genetics | 2003

Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum

Eyal Blum; Michael Mazourek; Mary O'Connell; Jeanne Curry; Troy Thorup; Kede Liu; Molly Jahn; Ilan Paran

Quantitative variation in the accumulation of two major capsaicinoids responsible for pungency in the fruit of chile peppers, capsaicin and dihydrocapsaicin, was analyzed in a cross between the non-pungent Capsicum annuum parent cv. Maor and a pungent Capsicum frutescens parent, accession BG 2816. In order to identify quantitative trait loci (QTLs) for capsaicinoid content, we employed the bulked segregant analysis method and screened bulked DNA from F2 individuals at the extremes of the distribution of capsaicinoid content with RAPD primers. Screening with 400 primers allowed the identification of three loci that were polymorphic between the bulks. These RAPD markers were converted to SCARs and subsequently mapped with additional RFLP markers to chromosome 7 of pepper. QTL interval analysis for individual and total capsaicinoid content identified a major QTL, termed cap, which explained 34–38% of the phenotypic variation for this trait in two growing environments. For all measurements, the allele of the pungent parent BG 2816 at cap contributed to the increased level of pungency. To determine whether known structural genes in the pathway could define a candidate for this QTL, 12 clones obtained from differentially expressed transcripts from placental tissue in pungent peppers were also mapped. None of them had a significant effect on this trait, nor did the allelic state at the locus C, the on/off switch for pungency in pepper, located on chromosome 2. The identity of cap and its effect on capsaicin content in other backgrounds will be addressed in future studies.


The Plant Cell | 2003

Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize

Manjit Singh; Paul E. Lewis; Kristine Hardeman; Ling Bai; Jocelyn K. C. Rose; Michael Mazourek; Paul Chomet; Thomas P. Brutnell

The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene β-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.


Plant Physiology | 2009

A Dynamic Interface for Capsaicinoid Systems Biology

Michael Mazourek; Anuradha Pujar; Yelena Borovsky; Ilan Paran; Lukas A. Mueller; Molly Jahn

Capsaicinoids are the pungent alkaloids that give hot peppers (Capsicum spp.) their spiciness. While capsaicinoids are relatively simple molecules, much is unknown about their biosynthesis, which spans diverse metabolisms of essential amino acids, phenylpropanoids, benzenoids, and fatty acids. Pepper is not a model organism, but it has access to the resources developed in model plants through comparative approaches. To aid research in this system, we have implemented a comprehensive model of capsaicinoid biosynthesis and made it publicly available within the SolCyc database at the SOL Genomics Network (http://www.sgn.cornell.edu). As a preliminary test of this model, and to build its value as a resource, targeted transcripts were cloned as candidates for nearly all of the structural genes for capsaicinoid biosynthesis. In support of the role of these transcripts in capsaicinoid biosynthesis beyond correct spatial and temporal expression, their predicted subcellular localizations were compared against the biosynthetic model and experimentally determined compartmentalization in Arabidopsis (Arabidopsis thaliana). To enable their use in a positional candidate gene approach in the Solanaceae, these genes were genetically mapped in pepper. These data were integrated into the SOL Genomics Network, a clade-oriented database that incorporates community annotation of genes, enzymes, phenotypes, mutants, and genomic loci. Here, we describe the creation and integration of these resources as a holistic and dynamic model of the characteristic specialized metabolism of pepper.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A cytochrome P450 regulates a domestication trait in cultivated tomato.

Manohar Chakrabarti; Na Zhang; Christopher Sauvage; Stéphane Muños; José Blanca; Joaquín Cañizares; María José Díez; Rhiannon Schneider; Michael Mazourek; Jammi McClead; Mathilde Causse; Esther van der Knaap

Significance This study reports the cloning of a tomato gene, SlKLUH, that controls fruit mass by increased cell layers and delayed fruit ripening. In addition, we identified a potential regulatory SNP in the promoter of SlKLUH that is significantly associated with the fruit mass. Altogether, our study encompasses several genetic analyses, as well as association mapping, plant transformation experiments, and phenotypic evaluations to offer insights into the molecular basis of the regulation of tomato fruit mass, a critical trait in the domestication of fruit and vegetable crops. Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops.


Theoretical and Applied Genetics | 2006

QTL analysis for capsaicinoid content in Capsicum

Arnon Ben-Chaim; Yelena Borovsky; Matthew Falise; Michael Mazourek; Byoung-Cheorl Kang; Ilan Paran; Molly Jahn

Pungency or “heat” found in Capsicum fruit results from the biosynthesis and accumulation of alkaloid compounds known as capsaicinoids in the dissepiment, placental tissue adjacent to the seeds. Pepper cultivars differ with respect to their level of pungency because of quantitative and qualitative variation in capsaicinoid content. We analyzed the segregation of three capsaicinoids: capsaicin, dihydrocapsaicin and nordihydrocapsaicin in an inter-specific cross between a mildly pungent Capsicum annuum ‘NuMex RNaky’ and the wild, highly pungent C. frutescens accession BG2814-6. F3 families were analyzed in three trials in California and in Israel and a dense molecular map was constructed comprised mostly of loci defined by simple sequence repeat (SSR) markers. Six QTL controlling capsaicinoid content were detected on three chromosomes. One gene from the capsaicinoid biosynthetic pathway, BCAT, and one random fruit EST, 3A2, co-localized with QTL detected in this study on chromosomes 3 and 4. Because one confounding factor in quantitative determination of capsaicinoid is fruit size, fruit weight measurements were taken in two trials. Two QTL controlling fruit weight were detected, however, they did not co-localize with QTL detected for capsaicinoid content. The major contribution to the phenotypic variation of capsaicinoid content (24–42% of the total variation) was attributed to a digenic interaction between a main-effect QTL, cap7.1, and a marker located on chromosome 2 that did not have a main effect on the trait. A second QTL, cap7.2 is likely to correspond to the QTL, cap, identified in a previous study as having pronounced influence on capsaicinoid content.


Journal of Experimental Botany | 2013

Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

Yong-Qiang Wang; Yong Yang; Zhangjun Fei; Hui Yuan; Tara Fish; Theodore W. Thannhauser; Michael Mazourek; Leon V. Kochian; Xiaowu Wang; Li Li

Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953–2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.


Genetics | 2009

The Fractionated Orthology of Bs2 and Rx/Gpa2 Supports Shared Synteny of Disease Resistance in the Solanaceae

Michael Mazourek; Elizabeth T. Cirulli; Sarah M. Collier; Laurie G. Landry; Byoung Cheorl Kang; Edmund A. Quirin; James M. Bradeen; Peter Moffett; Molly Jahn

Comparative genomics provides a powerful tool for the identification of genes that encode traits shared between crop plants and model organisms. Pathogen resistance conferred by plant R genes of the nucleotide-binding–leucine-rich-repeat (NB–LRR) class is one such trait with great agricultural importance that occupies a critical position in understanding fundamental processes of pathogen detection and coevolution. The proposed rapid rearrangement of R genes in genome evolution would make comparative approaches tenuous. Here, we test the hypothesis that orthology is predictive of R-gene genomic location in the Solanaceae using the pepper R gene Bs2. Homologs of Bs2 were compared in terms of sequence and gene and protein architecture. Comparative mapping demonstrated that Bs2 shared macrosynteny with R genes that best fit criteria determined to be its orthologs. Analysis of the genomic sequence encompassing solanaceous R genes revealed the magnitude of transposon insertions and local duplications that resulted in the expansion of the Bs2 intron to 27 kb and the frequently detected duplications of the 5′-end of R genes. However, these duplications did not impact protein expression or function in transient assays. Taken together, our results support a conservation of synteny for NB–LRR genes and further show that their distribution in the genome has been consistent with global rearrangements.


Plant Physiology | 2017

Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux

Noam Chayut; Hui Yuan; Shachar Ohali; Ayala Meir; Uzi Sa’ar; Galil Tzuri; Yi Zheng; Michael Mazourek; Shimon Gepstein; Xiangjun Zhou; Vitaly Portnoy; Efraim Lewinsohn; Arthur A. Schaffer; Nurit Katzir; Zhangjun Fei; Ralf Welsch; Li Li; Joseph Burger; Yaakov Tadmor

CmOr golden SNP dramatically affects carotenoid content and plastid fate in melon by inhibiting metabolism downstream of β-carotene. β-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, β-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowβ) that lowered fruit β-carotene levels with impaired chromoplast biogenesis. Cmor-lowβ exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high β-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of β-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP. Moreover, Cmor-lowβ was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of β-carotene to dramatically affect both carotenoid content and plastid fate.


Molecular Breeding | 2015

Development of user-friendly markers for the pvr1 and Bs3 disease resistance genes in pepper

William L. Holdsworth; Michael Mazourek

Viruses and Xanthomonas spp., the causal agent of bacterial spot, are serious threats to pepper (Capsicum spp.) production in the USA. For decades, pepper growers have relied on host plant resistance as a first line of defense against these pathogens, and pepper breeders have deployed, cloned, and characterized a growing number of resistance genes. Molecular markers within or linked to these genes have facilitated rapid screening of breeding populations for resistance alleles relative to methods requiring pathogen inoculation. We have developed user-friendly markers in coding regions for the cloned pvr1 and Bs3 resistance genes using the Kompetitive Allele-Specific PCR (KASP) genotyping system in order to increase the robustness and throughput by which these loci are screened. The KASP markers are inexpensive, fast to process, and easily scored.


Planta | 2014

Regulatory control of carotenoid accumulation in winter squash during storage

Ming Ke Zhang; Mei Ping Zhang; Michael Mazourek; Yaakov Tadmor; Li Li

AbstractMain conclusionStorage promotes carotenoid accumulation and converts amylochromoplasts into chromoplasts in winter squash. Such carotenoid enhancement is likely due to continuous biosynthesis along with reduced turnover and/or enhanced sequestration. Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage improved visual appearance of fruit flesh color from light to dark orange, and promoted continuous accumulation of carotenoids during the first 2-month storage. Such an increased carotenoid accumulation was found to be concomitant with starch breakdown, resulting in the conversion of amylochromoplasts into chromoplasts. The butternut fruits contained predominantly β-carotene, lutein, and violaxanthin. Increased ratios of β-carotene and violaxanthin to total carotenoids were noticed during the storage. Analysis of carotenoid metabolic gene expression and PSY protein level revealed a decreased expression of carotenogenic genes and PSY protein following the storage, indicating that the increased carotenoid level might not be due to increased biosynthesis. Instead, the increase likely resulted from a continuous biosynthesis with a possibly reduced turnover and/or enhanced sequestration, suggesting a complex regulation of carotenoid accumulation during fruit storage. This study provides important information to our understanding of carotenogenesis and its regulation during postharvest storage of fruits.

Collaboration


Dive into the Michael Mazourek's collaboration.

Top Co-Authors

Avatar

Molly Jahn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

Cornell University

View shared research outputs
Top Co-Authors

Avatar

Zhangjun Fei

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Clarice J. Coyne

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. McGee

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge