Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Meir is active.

Publication


Featured researches published by Michael Meir.


Journal of Cellular Physiology | 2011

Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro.

Nicolas Schlegel; Michael Meir; Volker Spindler; Christoph-Thomas Germer; Jens Waschke

Maintenance of intestinal epithelial barrier functions is crucial to prevent systemic contamination by microbes that penetrate from the gut lumen. GTPases of the Rho‐family such as RhoA, Rac1, and Cdc42 are known to be critically involved in the regulation of intestinal epithelial barrier functions. However, it is still unclear whether inactivation or activation of these GTPases exerts barrier protection or not. We tested the effects of Rho GTPase activities on intestinal epithelial barrier functions by using the bacterial toxins cytotoxic necrotizing factor 1 (CNF‐1), toxin B, C3 transferase (C3 TF), and lethal toxin (LT) in an in vitro model of the intestinal epithelial barrier. Incubation of cell monolayers with CNF‐1 for 3 h induced exclusive activation of RhoA whereas Rac1 and Cdc42 activities were unchanged. As revealed by FITC‐dextran flux and measurements of transepithelial electrical resistance (TER) intestinal epithelial permeability was significantly increased under these conditions. Inhibition of Rho kinase via Y27632 blocked barrier destabilization of CNF‐1 after 3 h. In contrast, after 24 h of incubation with CNF‐1 only Rac1 and Cdc42 but not RhoA were activated which resulted in intestinal epithelial barrier stabilization. Toxin B to inactivate RhoA, Rac1, and Cdc42 as well as Rac1 inhibitor LT increased intestinal epithelial permeability. Similar effects were observed after inhibition of RhoA/Rho kinase signaling by C3 TF or Y27632. Taken together, these data demonstrate that both activation and inactivation of RhoA signaling increased paracellular permeability whereas activation of Rac1 and Cdc42 correlated with stabilized barrier functions. J. Cell. Physiol. 226: 1196–1203, 2011.


Cardiovascular Research | 2015

Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis

Sven Flemming; Natalie Burkard; Melanie Renschler; Franziska Vielmuth; Michael Meir; Martin Alexander Schick; Christian Wunder; Christoph-Thomas Germer; Volker Spindler; Jens Waschke; Nicolas Schlegel

AIMS Microvascular endothelial barrier breakdown in sepsis precedes organ failure and death in patients. We tested the hypothesis that the formation of endothelium-derived soluble vascular endothelial (VE)-cadherin fragments (sVE-cadherin) is involved in inflammation-induced endothelial barrier disruption. METHODS AND RESULTS Incubation of human dermal microvascular endothelial cells (HDMEC) with tumour necrosis factor-α (TNF-α) and bacterial lipopolysaccharide (LPS) led to endothelial barrier disruption which correlated with significantly increased sVE-cadherin at a size of ∼90 kDa in cell culture supernatants. Inhibition of the VE-cadherin-cleaving disintegrin and metalloproteinase ADAM10 using GI254023X attenuated inflammation-induced formation of sVE-cadherin and endothelial barrier disruption, suggesting ADAM10-mediated shedding as a mechanism underlying sVE-cadherin release. Formation of VE-cadherin fragments at 90 and 110 kDa was observed when recombinant VE-cadherin (rVE-cadherin) was digested with recombinant ADAM10. Mass spectrometry of the VE-cadherin fragments showed that they originated from cleavage of the extracelluar domain and thereby several cleavage sites of ADAM10 were identified. Atomic force microscopy measurements demonstrated that cell culture supernatants containing sVE-cadherin and application of rVE-cadherin blocked VE-cadherin binding. Accordingly rVE-cadherin dose-dependently led to loss of endothelial barrier functions in HDMEC monolayers. Finally, in patients suffering from severe sepsis or septic shock with clinical signs of a microvascular leackage, serum levels of sVE-cadherin were significantly increased. CONCLUSION Taken together, formation of sVE-cadherin is associated and contributes to inflammation-induced breakdown of endothelial barrier functions by inhibition of VE-cadherin binding. The underlying mechanism of VE-cadherin cleavage involves ADAM10 and appears to be of clinical relevance since sVE-cadherin was augmented in patients with severe sepsis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

Michael Meir; Sven Flemming; Natalie Burkard; Lisa Bergauer; Marco Metzger; Christoph-Thomas Germer; Nicolas Schlegel

Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.


Shock | 2014

Phosphodiesterase 4 inhibition dose dependently stabilizes microvascular barrier functions and microcirculation in a rodent model of polymicrobial sepsis.

Sven Flemming; Nicolas Schlegel; Christian Wunder; Michael Meir; Wolfgang Baar; Jakob Wollborn; Norbert Roewer; Christoph-Thomas Germer; Martin Alexander Schick

ABSTRACT Background: Breakdown of microvascular endothelial barrier functions contributes to disturbed microcirculation, organ failure, and death in sepsis. Increased endothelial cAMP levels by systemic application of phosphodiesterase 4 inhibitors (PD-4-I) have previously been demonstrated to protect microvascular barrier properties in a model of systemic inflammation (systemic inflammatory response syndrome) suggesting a novel therapeutic option to overcome this problem. However, in a clinically relevant model of polymicrobial sepsis long-term effects, immunomodulatory effects and effectivity of PD-4-I to stabilize microvascular barrier functions and microcirculation remained unexplored. Methods: We induced polymicrobial sepsis using the colon ascendens stent peritonitis (CASP) model in which we performed macrohemodynamic and microhemodynamic monitoring with and without systemic intravenous application of different doses of PD-4-I rolipram in Sprague-Dawley rats over 26 h. Results: All animals with CASP showed clinical and laboratory signs of sepsis and peritonitis. Whereas macrohemodynamic adverse effects were not evident, application of PD-4-I led to stabilization of endothelial barrier properties as revealed by reduced extravasation of fluorescein isothiocyanate–albumin. However, only low-dose application of 1 mg/kg body weight per hour of PD-4-I improved microcirculatory flow in the CASP model, whereas high-dose therapy of 3 mg/kg BW per hour PDI-4-I had adverse effects. Accordingly, sepsis-induced acute kidney injury and lung edema were prevented by PD-4-I treatment. Furthermore, PD-4-I showed immunomodulatory effects as revealed by decreased interleukin 1&agr; (IL-1&agr;), IL-1&bgr;, IL-12, and tumor necrosis factor &agr; levels following PD-4-I treatment, which appeared not to correlate with barrier-stabilizing effects of rolipram. Conclusions: These data provide further evidence that systemic application of PD-4-I could be suitable for therapeutic microvascular barrier stabilization and improvement of microcirculatory flow in sepsis.


Inflammatory Bowel Diseases | 2015

Loss of Desmoglein 2 Contributes to the Pathogenesis of Crohn's Disease

Volker Spindler; Michael Meir; Balázs Vigh; Sven Flemming; Katharina Hütz; Christoph-Thomas Germer; Jens Waschke; Nicolas Schlegel

Background:The intestinal epithelium of patients with Crohns disease (CD) is characterized by defects in permeability and alterations in tight junction morphology sealing the paracellular cleft. Desmosomes are primarily considered to mediate strong intercellular cohesion. Because barrier properties of epithelial cells were shown to depend on the function of the desmosomal adhesion molecule desmoglein 2 (Dsg2), we here investigated the relevance of Dsg2 for CD. Methods:Biopsies from the terminal ileum of 14 patients with CD and 12 healthy controls were investigated for changes in cell adhesion molecules. Two intestinal epithelial cell lines were used for functional studies. A tandem peptide modulating Dsg binding was applied to strengthen Dsg2 interaction. Results:Dsg2 but not the adherens junction molecule E-cadherin was strongly reduced in the mucosa of patients with CD. TNF-&agr;, a central cytokine in CD pathogenesis, led to loss of cell cohesion and increased permeability in cultured epithelial cells, which was paralleled by loss of Dsg2 at cell borders, reduction of the tight junction component claudin-1, and upregulation of claudin-2. These effects were mediated at least in part by increased activity of p38MAPK because inhibition of this kinase restored intercellular adhesion and blunted the permeability increase induced by TNF-&agr;. Importantly, stabilizing desmosomal adhesion through tandem peptide ameliorated loss of barrier functions and prevented claudin-2 increase. Conclusions:We show an important role of p38MAPK-mediated regulation of desmosomal adhesion resulting in upregulation of claudin-2 in CD. Our data suggest peptide-mediated strengthening of impaired Dsg2 adhesion as a novel therapeutic approach in CD.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

The glial cell-line derived neurotrophic factor: a novel regulator of intestinal barrier function in health and disease

Michael Meir; Sven Flemming; Natalie Burkard; Johanna Wagner; Christoph-Thomas Germer; Nicolas Schlegel

Regulation of the intestinal epithelial barrier is a differentiated process, which is profoundly deranged in inflammatory bowel diseases. Recent data provide evidence that the glial cell line-derived neurotrophic factor (GDNF) is critically involved in intestinal epithelial wound healing and barrier maturation and exerts antiapoptotic effects under certain conditions. Furthermore, not only the enteric nervous system, but also enterocytes synthesize GDNF in significant amounts, which points to a potential para- or autocrine signaling loop between enterocytes. Apart from direct effects of GDNF on enterocytes, an immunomodulatory role of this protein has been previously assumed because of a significant reduction of inflammation in a model of chronic inflammatory bowel disease after application of GDNF. In this review we summarize the current knowledge of GDNF on intestinal epithelial barrier regulation and discuss the novel role for GDNF as a regulator of intestinal barrier functions in health and disease.


Mucosal Immunology | 2018

Desmoglein 2, but not desmocollin 2, protects intestinal epithelia from injury

Annika Gross; Lotta Antonia Pauline Pack; Gabriel M. Schacht; Sebastian Kant; Hanna Ungewiss; Michael Meir; Nicolas Schlegel; Christian Preisinger; Peter Boor; Nurdan Guldiken; Claudia A. Krusche; Gernot Sellge; Christian Trautwein; Jens Waschke; Arnd Heuser; Rudolf E. Leube; Pavel Strnad

Desmosomes are the least understood intercellular junctions in the intestinal epithelia and provide cell–cell adhesion via the cadherins desmoglein (Dsg)2 and desmocollin (Dsc)2. We studied these cadherins in Crohn’s disease (CD) patients and in newly generated conditional villin-Cre DSG2 and DSC2 knockout mice (DSG2ΔIEC; DSC2ΔIEC). CD patients exhibited altered desmosomes and reduced Dsg2/Dsc2 levels. The intestines of both transgenic animal lines were histopathologically inconspicuous. However, DSG2ΔIEC, but not DSC2ΔIEC mice displayed an increased intestinal permeability, a wider desmosomal space as well as alterations in desmosomal and tight junction components. After dextran sodium sulfate (DSS) treatment and Citrobacter rodentium exposure, DSG2ΔIEC mice developed a more-pronounced colitis, an enhanced intestinal epithelial barrier disruption, leading to a stronger inflammation and activation of epithelial pSTAT3 signaling. No susceptibility to DSS-induced intestinal injury was noted in DSC2ΔIEC animals. Dsg2 interacted with the cytoprotective chaperone Hsp70. Accordingly, DSG2ΔIEC mice had lower Hsp70 levels in the plasma membrane compartment, whereas DSC2ΔIEC mice displayed a compensatory recruitment of galectin 3, a junction-tightening protein. Our results demonstrate that Dsg2, but not Dsc2 is required for the integrity of the intestinal epithelial barrier in vivo.


Cellular and Molecular Life Sciences | 2018

Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion

Hanna Ungewiß; Vera Rötzer; Michael Meir; Christina Fey; Markus Diefenbacher; Nicolas Schlegel; Jens Waschke

Rapidly renewing epithelial tissues such as the intestinal epithelium require precise tuning of intercellular adhesion and proliferation to preserve barrier integrity. Here, we provide evidence that desmoglein 2 (Dsg2), an adhesion molecule of desmosomes, controls cell adhesion and proliferation via epidermal growth factor receptor (EGFR) signaling. Dsg2 is required for EGFR localization at intercellular junctions as well as for Src-mediated EGFR activation. Src binds to EGFR and is required for localization of EGFR and Dsg2 to cell–cell contacts. EGFR is critical for cell adhesion and barrier recovery. In line with this, Dsg2-deficient enterocytes display impaired barrier properties and increased cell proliferation. Mechanistically, Dsg2 directly interacts with EGFR and undergoes heterotypic-binding events on the surface of living enterocytes via its extracellular domain as revealed by atomic force microscopy. Thus, our study reveals a new mechanism by which Dsg2 via Src shapes EGFR function towards cell adhesion.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity

Nicolas Schlegel; Michael Meir; Wolfgang-Moritz Heupel; Bastian Holthöfer; Rudolf E. Leube; Jens Waschke


Histochemistry and Cell Biology | 2012

Role of NF-κB activation in LPS-induced endothelial barrier breakdown

Nicolas Schlegel; Rhea Leweke; Michael Meir; Christoph-Thomas Germer; Jens Waschke

Collaboration


Dive into the Michael Meir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge