Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael N. Routledge is active.

Publication


Featured researches published by Michael N. Routledge.


Mutagenesis | 2010

Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial

Lykke Forchhammer; Clara Johansson; Steffen Loft; Lennart Möller; Roger W. L. Godschalk; Sabine A.S. Langie; George D. D. Jones; Rachel W. L. Kwok; Andrew R. Collins; Amaya Azqueta; David H. Phillips; Osman Sozeri; Maciej Stępnik; Jadwiga Palus; Ulla Vogel; Håkan Wallin; Michael N. Routledge; Catherine Handforth; Alessandra Allione; Giuseppe Matullo; João Paulo Teixeira; Solange Costa; Patrizia Riso; Marisa Porrini; Peter Møller

The comet assay has become a popular method for the assessment of DNA damage in biomonitoring studies and genetic toxicology. However, few studies have addressed the issue of the noted inter-laboratory variability of DNA damage measured by the comet assay. In this study, 12 laboratories analysed the level of DNA damage in monocyte-derived THP-1 cells by either visual classification or computer-aided image analysis of pre-made slides, coded cryopreserved samples of cells and reference standard cells (calibration curve samples). The reference standard samples were irradiated with ionizing radiation (0-10 Gy) and used to construct a calibration curve to calculate the number of lesions per 10(6) base pair. All laboratories detected dose-response relationships in the coded samples irradiated with ionizing radiation (1.5-7 Gy), but there were overt differences in the level of DNA damage reported by the different laboratories as evidenced by an inter-laboratory coefficient of variation (CV) of 47%. Adjustment of the primary comet assay end points by a calibration curve prepared in each laboratory reduced the CV to 28%, a statistically significant reduction (P < 0.05, Levenes test). A large fraction of the inter-laboratory variation originated from differences in image analysis, whereas the intra-laboratory variation was considerably smaller than the variation between laboratories. In summary, adjustment of primary comet assay results by reference standards reduces inter-laboratory variation in the level of DNA damage measured by the alkaline version of the comet assay.


Particle and Fibre Toxicology | 2012

Mechanism of cellular uptake of genotoxic silica nanoparticles

Qingshan Mu; Nicole Hondow; Łukasz Krzemiński; Andy Brown; Lars J. C. Jeuken; Michael N. Routledge

Mechanisms for cellular uptake of nanoparticles have important implications for nanoparticulate drug delivery and toxicity. We have explored the mechanism of uptake of amorphous silica nanoparticles of 14 nm diameter, which agglomerate in culture medium to hydrodynamic diameters around 500 nm. In HT29, HaCat and A549 cells, cytotoxicity was observed at nanoparticle concentrations ≥ 1 μg/ml, but DNA damage was evident at 0.1 μg/ml and above. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy confirmed entry of the silica particles into A549 cells exposed to 10 μg/ml of nanoparticles. The particles were observed in the cytoplasm but not within membrane bound vesicles or in the nucleus. TEM of cells exposed to nanoparticles at 4°C for 30 minutes showed particles enter cells when activity is low, suggesting a passive mode of entry. Plasma lipid membrane models identified physical interactions between the membrane and the silica NPs. Quartz crystal microbalance experiments on tethered bilayer lipid membrane systems show that the nanoparticles strongly bind to lipid membranes, forming an adherent monolayer on the membrane. Leakage assays on large unilamellar vesicles (400 nm diameter) indicate that binding of the silica NPs transiently disrupts the vesicles which rapidly self-seal. We suggest that an adhesive interaction between silica nanoparticles and lipid membranes could cause passive cellular uptake of the particles.


Mutagenesis | 2010

An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

Clara Johansson; Peter Møller; Lykke Forchhammer; Steffen Loft; Roger W. L. Godschalk; Sabine A.S. Langie; Stijn Lumeij; George D. D. Jones; Rachel W. L. Kwok; Amaya Azqueta; David H. Phillips; Osman Sozeri; Michael N. Routledge; Alexander J. Charlton; Patrizia Riso; Marisa Porrini; Alessandra Allione; Giuseppe Matullo; Jadwiga Palus; Maciej Stępnik; Andrew R. Collins; Lennart Möller

The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet assay end points to number of lesions/106 bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA glycosylase (FPG). Coded samples with DNA oxidation damage induced by treatment with different concentrations of photosensitizer (Ro 19-8022) plus light and calibration samples irradiated with ionizing radiation were distributed to the 10 participating laboratories to measure DNA damage using their own comet assay protocols. Nine of 10 laboratories reported the same ranking of the level of damage in the coded samples. The variation in assessment of oxidatively damaged DNA was largely due to differences in protocols. After conversion of the data to lesions/106 bp using laboratory-specific calibration curves, the variation between the laboratories was reduced. The contribution of the concentration of photosensitizer to the variation in net FPG-sensitive sites increased from 49 to 73%, whereas the inter-laboratory variation decreased. The participating laboratories were successful in finding a dose–response of oxidatively damaged DNA in coded samples, but there remains a need to standardize the protocols to enable direct comparisons between laboratories.


Gut | 2007

Methylene blue but not indigo carmine causes DNA damage to colonocytes in vitro and in vivo at concentrations used in clinical chromoendoscopy

J Davies; D Burke; J R Olliver; Laura J. Hardie; Christopher P. Wild; Michael N. Routledge

Identification of mucosal abnormalities is aided by the use of dyes during colonoscopy (chromoendoscopy).1 Two dyes that have found particular favour are methylene blue and indigo carmine.2,3 Methylene blue, which, unlike indigo carmine, is taken up by cells, induces cellular DNA damage in vitro via the generation of singlet oxygen when photoexcited by white light.4 In contrast, indigo carmine appears to be photostable and to possess little potential to damage genetic material in vitro.5,6 A recent clinical study has shown that the extent of DNA damage (particularly oxidative DNA damage) in human oesophageal cells is increased after methylene blue chromoendoscopy.7 Additional iatrogenic oxidative DNA damage to epithelial cells is of particular concern in such precancerous tissue because of the association between oxidative DNA damage, mutagenesis and the development of malignancy.8 We hypothesised that indigo carmine would induce less DNA damage than methylene blue both in vitro in cultured colon cells during simulated chromoendoscopy conditions and in vivo in colonic biopsy samples collected at chromoendoscopy. We used the alkaline comet assay …


Genome Biology | 2015

Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment.

Matt Silver; Noah J. Kessler; Branwen J. Hennig; Paula Dominguez-Salas; Eleonora Laritsky; Maria S. Baker; Cristian Coarfa; Hector Hernandez-Vargas; Jovita M. Castelino; Michael N. Routledge; Yun Yun Gong; Zdenko Herceg; Yong Sun Lee; Kwanbok Lee; Sophie E. Moore; Anthony J. Fulford; Andrew M. Prentice; Robert A. Waterland

BackgroundInterindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants.ResultsFirst, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements.ConclusionsThe non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.


Environmental Health Perspectives | 2014

A Prospective Study of Growth and Biomarkers of Exposure to Aflatoxin and Fumonisin during Early Childhood in Tanzania

Candida P. Shirima; Martin E. Kimanya; Michael N. Routledge; Chou Srey; Joyce Kinabo; Hans-Ulrich Humpf; Christopher P. Wild; Yu-Kang Tu; Yun Yun Gong

Background: Aflatoxin and fumonisin are toxic food contaminants. Knowledge about effects of their exposure and coexposure on child growth is inadequate. Objective: We investigated the association between child growth and aflatoxin and fumonisin exposure in Tanzania. Methods: A total of 166 children were recruited at 6–14 months of age and studied at recruitment, and at the 6th and 12th month following recruitment. Blood and urine samples were collected and analyzed for plasma aflatoxin–albumin adducts (AF-alb) using ELISA, and urinary fumonisin B1 (UFB1) using liquid chromatography–mass spectrometry, respectively. Anthropometric measurements were taken, and growth index z-scores were computed. Results: AF-alb geometric mean concentrations (95% CIs) were 4.7 (3.9, 5.6), 12.9 (9.9, 16.7), and 23.5 (19.9, 27.7) pg/mg albumin at recruitment, 6 months, and 12 months from recruitment, respectively. At these respective sampling times, geometric mean UFB1 concentrations (95% CI) were 313.9 (257.4, 382.9), 167.3 (135.4, 206.7), and 569.5 (464.5, 698.2) pg/mL urine, and the prevalence of stunted children was 44%, 55%, and 56%, respectively. UFB1 concentrations at recruitment were negatively associated with length-for-age z-scores (LAZ) at 6 months (p = 0.016) and at 12 months from recruitment (p = 0.014). The mean UFB1 of the three sampling times (at recruitment and at 6 and 12 months from recruitment) in each child was negatively associated with LAZ (p < 0.001) and length velocity (p = 0.004) at 12 months from recruitment. The negative association between AF-alb and child growth did not reach statistical significance. Conclusions: Exposure to fumonisin alone or coexposure with aflatoxins may contribute to child growth impairment. Citation: Shirima CP, Kimanya ME, Routledge MN, Srey C, Kinabo JL, Humpf HU, Wild CP, Tu YK, Gong YY. 2015. A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environ Health Perspect 123:173–178; http://dx.doi.org/10.1289/ehp.1408097


Molecular Nutrition & Food Research | 2013

Dietary exposure to aflatoxin and fumonisin among Tanzanian children as determined using biomarkers of exposure

Candida P. Shirima; Martin E. Kimanya; Joyce Kinabo; Michael N. Routledge; Chou Srey; Christopher P. Wild; Yun Yun Gong

SCOPE The study aims to evaluate the status of dietary exposure to aflatoxin and fumonisin in young Tanzanian children, using previously validated biomarkers of exposure. METHODS AND RESULTS A total of 148 children aged 12-22 months, were recruited from three geographically distant villages in Tanzania; Nyabula, Kigwa, and Kikelelwa. Plasma aflatoxin-albumin adducts (AF-alb) and urinary fumonisin B1 (UFB1) were measured by ELISA and LC-MS, respectively. AF-alb was detectable in 84% of children, was highest in fully weaned children (p < 0.01) with higher levels being associated with higher maize intake (p < 0.05). AF-alb geometric mean (95% CI) was 43.2 (28.7-65.0), 19.9 (13.5-29.2), and 3.6 (2.8-4.7) pg/mg albumin in children from Kigwa, Nyabula, and Kikelelwa, respectively. UFB1 was detectable in 96% of children and the level was highest in children who had been fully weaned (p < 0.01). The geometric UFB1 mean (95% CI) was 327.2 (217.1-493.0), 211.7 (161.1-278.1), and 82.8 (58.3-117.7) pg/mL in Kigwa, Nyabula, and Kikelelwa, respectively. About 82% of all the children were exposed to both mycotoxins. CONCLUSION Young children in Tanzania are chronically exposed to both aflatoxin and fumonisin through contaminated diet, although the level of exposure varies markedly between the three villages studied.


Chemical Research in Toxicology | 2014

Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles.

Qingshan Mu; Calin David; Josep Galceran; Carlos Rey-Castro; Rachel Wallace; Faith Bamiduro; Steven J. Milne; Nicole Hondow; Rik Brydson; Gema Vizcay-Barrena; Michael N. Routledge; Lars J. C. Jeuken; Andy Brown

ZnO nanoparticles (NPs) are prone to dissolution, and uncertainty remains whether biological/cellular responses to ZnO NPs are solely due to the release of Zn(2+) or whether the NPs themselves have additional toxic effects. We address this by establishing ZnO NP solubility in dispersion media (Dulbeccos modified Eagles medium, DMEM) held under conditions identical to those employed for cell culture (37 °C, 5% CO2, and pH 7.68) and by systematic comparison of cell-NP interaction for three different ZnO NP preparations. For NPs at concentrations up to 5.5 μg ZnO/mL, dissolution is complete (with the majority of the soluble zinc complexed to dissolved ligands in the medium), taking ca. 1 h for uncoated and ca. 6 h for polymer coated ones. Above 5.5 μg/mL, the results are consistent with the formation of zinc carbonate, keeping the solubilized zinc fixed to 67 μM of which only 0.45 μM is as free Zn(2+), i.e., not complexed to dissolved ligands. At these relatively high concentrations, NPs with an aliphatic polyether-coating show slower dissolution (i.e., slower free Zn(2+) release) and reprecipitation kinetics compared to those of uncoated NPs, requiring more than 48 h to reach thermodynamic equilibrium. Cytotoxicity (MTT) and DNA damage (Comet) assay dose-response curves for three epithelial cell lines suggest that dissolution and reprecipitation dominate for uncoated ZnO NPs. Transmission electron microscopy combined with the monitoring of intracellular Zn(2+) concentrations and ZnO-NP interactions with model lipid membranes indicate that an aliphatic polyether coat on ZnO NPs increases cellular uptake, enhancing toxicity by enabling intracellular dissolution and release of Zn(2+). Similarly, we demonstrate that needle-like NP morphologies enhance toxicity by apparently frustrating cellular uptake. To limit toxicity, ZnO NPs with nonacicular morphologies and coatings that only weakly interact with cellular membranes are recommended.


Environmental Health Perspectives | 2012

Aflatoxin Exposure May Contribute to Chronic Hepatomegaly in Kenyan School Children

Yun Yun Gong; Shona Wilson; Joseph K. Mwatha; Michael N. Routledge; Jovita M. Castelino; Bin Zhao; Gachuhi Kimani; H. Curtis Kariuki; Birgitte J. Vennervald; David W. Dunne; Christopher P. Wild

Background: Presentation with a firm type of chronic hepatomegaly of multifactorial etiology is common among school-age children in sub-Saharan Africa. Objective: Aflatoxin is a liver toxin and carcinogen contaminating staple maize food. In this study we examined its role in chronic hepatomegaly. Methods: Plasma samples collected in 2002 and again in 2004 from 218 children attending two schools in neighboring villages were assayed for aflatoxin exposure using the aflatoxin-albumin adduct (AF-alb) biomarker. Data were previously examined for associations among hepatomegaly, malaria, and schistosomiasis. Results: AF-alb levels were high in children from both schools, but the geometric mean (95% confidence interval) in year 2002 was significantly higher in Matangini [206.5 (175.5, 243.0) pg/mg albumin] than in Yumbuni [73.2 (61.6, 87.0) pg/mg; p < 0.001]. AF-alb levels also were higher in children with firm hepatomegaly [176.6 (129.6, 240.7) pg/mg] than in normal children [79.9 (49.6, 128.7) pg/mg; p = 0.029]. After adjusting for Schistosoma mansoni and Plasmodium infection, we estimated a significant 43% increase in the prevalence of hepatomegaly/hepatosplenomegaly for every natural-log-unit increase in AF-alb. In 2004, AF-alb levels were markedly higher than in 2002 [539.7 (463.3, 628.7) vs. 114.5 (99.7, 131.4) pg/mg; p < 0.001] but with no significant difference between the villages or between hepatomegaly and normal groups [539.7 (436.7, 666.9) vs. 512.6 (297.3, 883.8) pg/mg], possibly because acute exposures during an aflatoxicosis outbreak in 2004 may have masked any potential underlying relationship. Conclusions: Exposure to aflatoxin was associated with childhood chronic hepatomegaly in 2002. These preliminary data suggest an additional health risk that may be related to aflatoxin exposure in children, a hypothesis that merits further testing.


Mutagenesis | 2012

Inter-laboratory variation in DNA damage using a standard comet assay protocol

Lykke Forchhammer; Clara Ersson; Steffen Loft; Lennart Möller; Roger W. L. Godschalk; Frederik J. Van Schooten; George D. D. Jones; Jennifer A. Higgins; Marcus S. Cooke; Vilas Mistry; Mahsa Karbaschi; Andrew R. Collins; Amaya Azqueta; David H. Phillips; Osman Sozeri; Michael N. Routledge; Kirsty Nelson-Smith; Patrizia Riso; Marisa Porrini; Giuseppe Matullo; Alessandra Allione; Maciej Stępnik; Magdalena Komorowska; João Paulo Teixeira; Solange Costa; L.A. Corcuera; Adela López de Cerain; Blanca Laffon; Vanessa Valdiglesias; Peter Møller

There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratorys own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.

Collaboration


Dive into the Michael N. Routledge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Loft

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge