Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael N. VanSaun is active.

Publication


Featured researches published by Michael N. VanSaun.


Clinical Cancer Research | 2013

Molecular Pathways: Adiponectin and Leptin Signaling in Cancer

Michael N. VanSaun

The increasing percentage of obese individuals in the population and its independent association of increased risk for the development of cancer have heightened the necessity to understand the molecular mechanisms that underlie this connection. The deregulation of adipokines in the setting of obesity and their impact on cancer progression and metastasis is one such area of research. Adipokines are bioactive proteins that mediate metabolism, inflammation, angiogenesis, and proliferation. Altered levels of adipokines or their cognate receptors in cancers can ultimately lead to an imbalance in downstream molecular pathways. Discovery of adipokine receptors in various cancers has highlighted the potential for novel therapeutic targets. Leptin and adiponectin represent two adipokines that elicit generally opposing molecular effects. Epidemiologic studies have highlighted associations between increased serum leptin levels and increased tumor growth, whereas adiponectin exhibits an inverse correlation with cancer development. This review addresses the current level of understanding of molecular pathways activated by adiponectin and leptin to identify the areas of intervention and facilitate advancement in the field. Clin Cancer Res; 19(8); 1926–32. ©2013 AACR.


Molecular and Cellular Biology | 2004

Regulation of the Rapsyn Promoter by Kaiso and δ-Catenin

Marianna Rodova; Kevin F. Kelly; Michael N. VanSaun; Juliet M. Daniel; Michael J. Werle

ABSTRACT Rapsyn is a synapse-specific protein that is required for clustering acetylcholine receptors at the neuromuscular junction. Analysis of the rapsyn promoter revealed a consensus site for the transcription factor Kaiso within a region that is mutated in a subset of patients with congenital myasthenic syndrome. Kaiso is a POZ-zinc finger family transcription factor which recognizes the specific core consensus sequence CTGCNA (where N is any nucleotide). Previously, the only known binding partner for Kaiso was the cell adhesion cofactor, p120 catenin. Here we show that δ-catenin, a brain-specific member of the p120 catenin subfamily, forms a complex with Kaiso. Antibodies against Kaiso and δ-catenin recognize proteins in the nuclei of C2C12 myocytes and at the postsynaptic domain of the mouse neuromuscular junction. Endogenous Kaiso in C2C12 cells coprecipitates with the rapsyn promoter in vivo as shown by chromatin immunoprecipitation assay. Minimal promoter assays demonstrated that the rapsyn promoter can be activated by Kaiso and δ-catenin; this activation is apparently muscle specific. These results provide the first experimental evidence that rapsyn is a direct sequence-specific target of Kaiso and δ-catenin. We propose a new model of synapse-specific transcription that involves the interaction of Kaiso, δ-catenin, and myogenic transcription factors at the neuromuscular junction.


Molecular Imaging | 2008

Optical Imaging of Matrix Metalloproteinase-7 Activity In Vivo Using a Proteolytic Nanobeacon

Randy L. Scherer; Michael N. VanSaun; J. Oliver McIntyre; Lynn M. Matrisian

Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes involved in tumor progression. We present the in vivo detection and quantitation of MMP7 activity using a specific near-infrared polymer-based proteolytic beacon, PB-M7NIR. PB-M7NIR is a pegylated polyamidoamine PAMAM-Generation 4 dendrimer core covalently coupled to a Cy5.5-labeled peptide representing a selective substrate that monitors MMP7 activity (sensor) and AF750 as an internal reference to monitor relative substrate concentration (reference). In vivo imaging of tumors expressing MMP7 had a median sensor to reference ratio 2.2-fold higher than a that of a bilateral control tumor. Ex vivo imaging of intestines of multiple intestinal neoplasia (APCMin) mice injected systemically with PB-M7NIR revealed a sixfold increase in the sensor to reference ratio in the adenomas of APCMin mice compared with control intestinal tissue or adenomas from MMP7-null Min mice. PB-M7NIR detected tumor sizes as small as 0.01 cm 2 , and the sensor to reference ratio was independent of tumor size. Histologic sectioning of xenograft tumors localized the proteolytic signal to the extracellular matrix; MMP7-overexpressing tumors displayed an approximately 300-fold enhancement in the sensor to reference ratio compared with nonexpressing tumor cells. In APCMin adenomas, the proteolytic signal colocalized with the endogenously expressed MMP7 protein, with sensor to reference ratios approximately sixfold greater than that of normal intestinal epithelium. PB-M7NIR provides a useful reagent for the in vivo and ex vivo quantitation and localization of MMP-selective proteolytic activity.


Journal of Neurobiology | 2000

Matrix metalloproteinase-3 removes agrin from synaptic basal lamina

Michael N. VanSaun; Michael J. Werle

Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N-terminal region of agrin binds tightly to basal lamina, while the C-terminal region interacts with a muscle-specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase-3 (MMP-3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP-3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP-3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP-3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP-3 treatment does not alter anti-laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP-3 at the neuromuscular junction and that MMP-3 specifically removes agrin from synaptic basal lamina.


American Journal of Pathology | 2009

High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model.

Michael N. VanSaun; In Kyu Lee; Mary Kay Washington; Lynn M. Matrisian; David Lee Gorden

Non-alcoholic fatty liver disease (NAFLD), which includes steatosis and its progression to non-alcoholic steatohepatitis, is a liver disorder of increasing clinical significance. Here we characterize a murine model of high fat diet-induced NAFLD with progression from liver steatosis to histological features compatible with steatohepatitis and more advanced stages of NAFLD in humans, including chronic portal inflammation, pericellular and bridging fibrosis, Mallory body formation, and bile ductular reaction. Chronic changes induced by the prolonged consumption of a high-fat diet alone culminate in the development of primary liver dysplasias. Importantly, we extend these studies to demonstrate that even the early stages of uncomplicated steatosis provide a permissive microenvironment for the growth of colon cancer cells that are metastatic to the liver. High fat diet-induced steatosis, coupled with a splenic injection model of experimental liver metastasis using syngeneic MC38 colon cancer cells, resulted in an increased number of secondary tumor nodules and metastatic burden in steatotic livers. Metastatic nodules were associated with focal peritumoral areas of infiltrating inflammatory cells and associated apoptotic cell populations. These results suggest that the modulation of specific host factors in the steatotic liver contributes to tumor progression in the microenvironment of NAFLD.


PLOS ONE | 2011

Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model.

D. Lee Gorden; Pavlina T. Ivanova; David S. Myers; J. Oliver McIntyre; Michael N. VanSaun; J. Kelly Wright; Lynn M. Matrisian; H. Alex Brown

Background and Aims The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and progression to cirrhosis. While differences in liver lipids between disease states have been reported, precise composition of phospholipids and diacylglycerols (DAG) at a lipid species level has not been previously described. The goal of this study was to characterize changes in lipid species through progression of human NAFLD using advanced lipidomic technology and compare this with a murine model of early and advanced NAFLD. Methods Utilizing mass spectrometry lipidomics, over 250 phospholipid and diacylglycerol species (DAGs) were identified in normal and diseased human and murine liver extracts. Results Significant differences between phospholipid composition of normal and diseased livers were demonstrated, notably among DAG species, consistent with previous reports that DAG transferases are involved in the progression of NAFLD and liver fibrosis. In addition, a novel phospholipid species (ether linked phosphatidylinositol) was identified in human cirrhotic liver extracts. Conclusions Using parallel lipidomics analysis of murine and human liver tissues it was determined that mice maintained on a high-fat diet provide a reproducible model of NAFLD in regards to specificity of lipid species in the liver. These studies demonstrated that novel lipid species may serve as markers of advanced liver disease and importantly, marked increases in DAG species are a hallmark of NAFLD. Elevated DAGs may contribute to altered triglyceride, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) levels characteristic of the disease and specific DAG species might be important lipid signaling molecules in the progression of NAFLD.


Oncogene | 2012

Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT–SSX2

C. B. Garcia; C. M. Shaffer; Maria P. Alfaro; A. L. Smith; Jingchun Sun; Zhongming Zhao; Pampee P. Young; Michael N. VanSaun; Josiane Eid

Cell identity is determined by its gene expression programs. The ability of a cell to change its identity and produce cell types outside its lineage is achieved by the activity of transcription controllers capable of reprogramming differentiation gene networks. The synovial sarcoma (SS)-associated protein, SYT–SSX2, reprograms myogenic progenitors and human bone marrow-derived mesenchymal stem cells (BMMSCs) by dictating their commitment to a pro-neural lineage. It fulfills this function by directly targeting an extensive array of neural-specific genes as well as genes of developmental pathway mediators. Concomitantly, the ability of both myoblasts and BMMSCs to differentiate into their normal myogenic and adipogenic lineages was compromised. SS is believed to arise in mesenchymal stem cells where formation of the t(X/18) translocation product, SYT–SSX, constitutes the primary event in the cancer. SYT–SSX is therefore believed to initiate tumorigenesis in its target stem cell. The data presented here allow a glimpse at the initial events that likely occur when SYT–SSX2 is first expressed, and its dominant function in subverting the nuclear program of the stem cell, leading to its aberrant differentiation, as a first step toward transformation. In addition, we identified the fibroblast growth factor receptor gene, Fgfr2, as one occupied and upregulated by SYT–SSX2. Knockdown of FGFR2 in both BMMSCs and SS cells abrogated their growth and attenuated their neural phenotype. These results support the notion that the SYT–SSX2 nuclear function and differentiation effects are conserved throughout sarcoma development and are required for its maintenance beyond the initial phase. They also provide the stem cell regulator, FGFR2, as a promising candidate target for future SS therapy.


PLOS ONE | 2013

Hepatocellular proliferation correlates with inflammatory cell and cytokine changes in a murine model of nonalchoholic fatty liver disease.

Michael N. VanSaun; Alisha M. Mendonsa; D. Lee Gorden

Nonalchoholic fatty liver disease (NAFLD) is a problem of increasing prevalence and clinical significance worldwide and is associated with increased risk of development of end stage liver disease and cirrhosis, and can be complicated by hepatocellular carcinoma (HCC). NAFLD is characterized by physical and molecular changes in the liver microenvironment which include an influx of inflammatory cell populations, fibrosis, changes in gene expression, and cytokine production. To better understand changes to the liver in the setting of steatosis, we used a murine model of diet induced hepatic steatosis and corroborated our results with human patient samples of NAFLD. Among the cellular changes, we identified a significant increase in hepatocellular proliferation in the setting of steatosis as compared to controls. Analysis of inflammatory cell populations revealed increased infiltration of CD11b positive myeloid and CD3 positive lymphocytic cell populations in steatotic livers compared to normal livers. Resident Kupffer cells of the liver comprise the largest percentage of these myeloid cells and appear to be responsible for important cytokine alterations impacting proliferation of cells in the liver microenvironment. Significant alterations in cytokine profiles in the plasma and liver tissue lysates from normal and steatotic mice were detected including leptin, CXCL1, CXCL2, and CXCL16 that were further shown to directly increase hepatocyte proliferation in vitro. This increased hepatocellular proliferation and turnover in the setting of steatosis may play important roles in the progression and complications of NAFLD.


Cancer Discovery | 2013

Targeting the Wnt pathway in synovial sarcoma models.

Whitney Barham; Andrea L. Frump; Taylor P. Sherrill; Christina B. Garcia; Kenyi Saito-Diaz; Michael N. VanSaun; Barbara Fingleton; Linda A. Gleaves; Darren Orton; Mario R. Capecchi; Timothy S. Blackwell; Ethan Lee; Fiona E. Yull; Josiane Eid

UNLABELLED Synovial sarcoma is an aggressive soft-tissue malignancy of children and young adults, with no effective systemic therapies. Its specific oncogene, SYT-SSX (SS18-SSX), drives sarcoma initiation and development. The exact mechanism of SYT-SSX oncogenic function remains unknown. In an SYT-SSX2 transgenic model, we show that a constitutive Wnt/β-catenin signal is aberrantly activated by SYT-SSX2, and inhibition of Wnt signaling through the genetic loss of β-catenin blocks synovial sarcoma tumor formation. In a combination of cell-based and synovial sarcoma tumor xenograft models, we show that inhibition of the Wnt cascade through coreceptor blockade and the use of small-molecule CK1α activators arrests synovial sarcoma tumor growth. We find that upregulation of the Wnt/β-catenin cascade by SYT-SSX2 correlates with its nuclear reprogramming function. These studies reveal the central role of Wnt/β-catenin signaling in SYT-SSX2-induced sarcoma genesis, and open new venues for the development of effective synovial sarcoma curative agents. SIGNIFICANCE Synovial sarcoma is an aggressive soft-tissue cancer that afflicts children and young adults, and for which there is no effective treatment. The current studies provide critical insight into our understanding of the pathogenesis of SYT–SSX-dependent synovial sarcoma and pave the way for the development of effective therapeutic agents for the treatment of the disease in humans.


Journal of Surgical Research | 2013

Increased metastases are associated with inflammation and matrix metalloproteinase-9 activity at incision sites in a murine model of peritoneal dissemination of colorectal cancer

In Kyu Lee; Michael N. VanSaun; Jung Ho Shim; Lynn M. Matrisian; D. Lee Gorden

BACKGROUND Pro-inflammatory processes associated with the early postoperative state are known to contribute to peritoneal metastases in patients with advanced diseases. This study aimed to determine whether the wound healing response after an abdominal incision leads to increased matrix metalloproteinase (MMP)-9 activity locally, contributing to peritoneal metastasis. MATERIALS AND METHODS Metastatic tumors were initiated in C57bl/6J male mice (8wk of age) using a peritoneal injection model with syngeneic MC38 murine colon cancer cells; appropriate control mice also were studied. Injections were performed into the peritoneum in the right lower quadrant. We then observed the occurrence and rate of peritoneal metastasis for each group. RESULTS By making an incision into the abdominal wall of mice, an inflammatory response was induced at the wound site. The inflammatory response initiated by the wound, in turn, increased the proliferation of mesothelial cells and increased inflammatory cell numbers locally, which contributed to an increase in parietal peritoneal metastases. In addition, the wound healing process increased the expression of pro-inflammatory cytokines and the number of inflammatory cells in the peritoneum. Moreover, MMP-9 in the modeled postoperative injury setting increased the number and severity of peritoneal metastases. CONCLUSIONS Thus, we conclude that wound-associated inflammation enhances pro-MMP-9 expression, which plays a key role in the growth and progression of cancer cells associated with peritoneal metastases.

Collaboration


Dive into the Michael N. VanSaun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanjuan Shi

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Supriya Srinivasan

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge