Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Carty is active.

Publication


Featured researches published by Michael P. Carty.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Regulation of human airway mucins by acrolein and inflammatory mediators

Michael T. Borchers; Michael P. Carty; George D. Leikauf

Bronchitis, asthma, and cystic fibrosis, marked by inflammation and mucus hypersecretion, can be caused or exacerbated by airway pathogens or irritants including acrolein, an aldehyde present in tobacco smoke. To determine whether acrolein and inflammatory mediators alter mucin gene expression, steady-state mRNA levels of two airway mucins, MUC5AC and MUC5B, were measured (by RT-PCR) in human lung carcinoma cells (NCI-H292). MUC5AC mRNA levels increased after ≥0.01 nM acrolein, 10 μM prostaglandin E2 or 15-hydroxyeicosatetraenoic acid, 1.0 nM tumor necrosis factor-α (TNF-α), or 10 nM phorbol 12-myristate 13-acetate (a protein kinase C activator). In contrast, MUC5B mRNA levels, although easily detected, were unaffected by these agonists, suggesting that irritants and associated inflammatory mediators increase mucin biosynthesis by inducing MUC5ACmessage levels, whereas MUC5B is constitutively expressed. When transcription was inhibited, TNF-α exposure increased MUC5AC message half-life compared with control level, suggesting that transcript stabilization is a major mechanism controlling increased MUC5AC message levels. Together, these findings imply that irritants like acrolein can directly and indirectly (via inflammatory mediators) increase airway mucin transcripts in epithelial cells.


Molecular and Cellular Biology | 1993

Replication and mutagenesis of UV-damaged DNA templates in human and monkey cell extracts.

Michael P. Carty; J Hauser; A S Levine; Kathleen Dixon

We have used in vitro DNA replication systems from human HeLa cells and monkey CV-1 cells to replicate a UV-damaged simian virus 40-based shuttle vector plasmid, pZ189. We found that replication of the plasmid was inhibited in a UV fluence-dependent manner, but even at UV fluences which caused damage to essentially all of the plasmid molecules some molecules became completely replicated. This replication was accompanied by an increase (up to 15-fold) in the frequency of mutations detected in the supF gene of the plasmid. These mutations were predominantly G:C-->A:T transitions similar to those observed in vivo. Treatment of the UV-irradiated plasmid DNA with Escherichia coli photolyase to reverse pyrimidine cyclobutane dimers (the predominant UV-induced photoproduct) before replication prevented the UV-induced inhibition of replication and reduced the frequency of mutations in supF to background levels. Therefore, the presence of pyrimidine cyclobutane dimers in the plasmid template appears to be responsible for both inhibition of replication and mutation induction. Further analysis of the replication of the UV-damaged plasmid revealed that closed circular replication products were sensitive to T4 endonuclease V (a pyrimidine cyclobutane dimer-specific endonuclease) and that this sensitivity was abolished by treatment of the replicated DNA with E. coli photolyase after replication but before T4 endonuclease treatment. These results demonstrate that these closed circular replication products contain pyrimidine cyclobutane dimers. Density labeling experiments revealed that the majority of plasmid DNA synthesized in vitro in the presence of bromodeoxyuridine triphosphate was hybrid density whether or not the plasmid was treated with UV radiation before replication; therefore, replication of UV-damaged templates appears to occur by the normal semiconservative mechanism. All of these data suggest that replication of UV-damaged templates occurs in vitro as it does in vivo and that this replication results in mutation fixation.


Cell Cycle | 2011

Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or γ-irradiation

Áine M. Prendergast; Séverine Cruet-Hennequart; Georgina Shaw; Frank Barry; Michael P. Carty

DNA damaging agents are widely used in treatment of hematogical malignancies and solid tumors. While effects on hematopoietic stem cells have been characterized, less is known about the DNA damage response in human mesenchymal stem cells (hMSCs) in the bone marrow stroma, progenitors of osteoblasts, chondrocytes and adipocytes. To elucidate the response of undifferentiated hMSCs to γ-irradiation and cisplatin, key DNA damage responses have been characterised in hMSCs from normal adult donors. Cisplatin and γ-irradiation activated the DNA damage response in hMSCs, including induction of p53 and p21, and activation of PI3 kinase-related protein kinase (PIKK)-dependent phosphorylation of histone H2AX on serine 139, and replication protein A2 on serine4/serine8. Chemical inhibition of ATM or DNA-PK reduced DNA damage-induced phosphorylation of H2AX, indicating a role for both PIKKs in the response of hMSCs to DNA damage. Consistent with repair of DNA strand breaks, γ-H2AX staining decreased by 24 hours following gamma-irradiation. γ-irradiation arrested hMSCs in the G1 phase of the cell cycle, while cisplatin induced S-phase arrest, mediated in part by the ATR/Chk1 checkpoint pathway. In hMSCs isolated from a chronic lymphocytic leukemia (CLL) patient, p53 and p21 were induced by cisplatin and γ-irradiation, while RPA2 was phosphorylated on serine4/8 in particular following cisplatin. Compared to peripheral blood lymphocytes or the leukemia cell line K562, both normal hMSCs and CLL-derived hMSCs were more resistant to cisplatin and γ-irradiation. These results provide insights into key pathways mediating the response of bone marrow-derived hMSCs to DNA damaging agents used in cancer treatment.


DNA Repair | 2008

Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase η-deficient human cells treated with cisplatin and oxaliplatin

Séverine Cruet-Hennequart; Macdara T. Glynn; Laura Murillo; Seamus Coyne; Michael P. Carty

The chemotherapeutic drugs cisplatin and oxaliplatin act by induction of DNA damage, including monoadducts, intrastrand and interstrand crosslinks. An increased understanding of the repair and replication of platinum-damaged DNA is required to improve the effectiveness of these drugs in killing cancer cells. We have investigated the effect of expression of DNA polymerase eta (poleta), a translesion synthesis (TLS) enzyme, on the response of human cell lines to cisplatin and oxaliplatin. Poleta-deficient cells are more sensitive to both drugs than are normal cells. In poleta-deficient cells, drug treatment leads to prolonged S-phase arrest, and increased phosphorylation of the phosphatidylinositol-3-kinase-related protein kinase (PIKK) substrates Chk1, p95/Nbs1 and RPA2, the 34kDa subunit of replication protein A. Cisplatin- and oxaliplatin-induced hyperphosphorylation of RPA2, and association of the hyperphosphorylated protein with chromatin, is elevated in poleta-deficient cells. Cisplatin-induced phosphorylation of RPA2 on serine 4/serine 8, but not on serine 33, is inhibited by the DNA-PK inhibitor, NU7441, but not by the ATM inhibitor, KU-55933. Cisplatin-induced DNA-PK-dependent hyperphosphorylation of RPA2 on serine 4/serine 8 occurs after recruitment of RPA to chromatin, as determined by immunofluorescence and by subcellular fractionation. ATR is required both for recruitment of RPA2 to chromatin and its subsequent hyperphosphorylation on serine 4/serine 8 by DNA-PK, since CGK733, an inhibitor of ATM and ATR, blocked both recruitment and hyperphosphorylation. Thus, increased sensitivity to cisplatin and oxaliplatin in DNA poleta-deficient cells is associated with prolonged S-phase arrest, and enhanced PIKK-signalling, in particular activation of DNA-PK-dependent hyperphosphorylation of RPA2 on serines 4 and 8.


Cell Cycle | 2009

Characterization of the effects of cisplatin and carboplatin on cell cycle progression and DNA damage response activation in DNA polymerase eta-deficient human cells.

Séverine Cruet-Hennequart; Villalan S; Kaczmarczyk A; O'Meara E; Sokol Am; Michael P. Carty

Translesion synthesis by DNA polymerase eta (polη) is one mechanism by which cancer cells can tolerate DNA damage by platinum-based anti-cancer drugs. Cells lacking polη are sensitive to these agents. To help define the consequences of polη-deficiency, we characterized the effects of equitoxic doses of cisplatin and carboplatin on cell cycle progression and activation of DNA damage response pathways in a human cell line lacking polη. We show that both cisplatin and carboplatin induce strong S-phase arrest in polη-deficient XP30RO cells, associated with reduced expression of cyclin E and cyclin B. PIK kinase-mediated phosphorylation of Chk1, H2AX and RPA2 was strongly activated by both cisplatin and carboplatin, but phosphorylation of these proteins was induced earlier by cisplatin than by an equitoxic dose of carboplatin. Compared to Chk1 and H2AX phosphorylation, RPA2 hyperphosphorylation on serine4/serine8 is a late event in response to platinum-induced DNA damage. We directly demonstrate, using dual-labeling flow cytometry, that damage-induced phosphorylation of RPA2 on serine4/serine8 occurs primarily in the S and G2 phases of the cell cycle, and show that the timing of RPA2 phosphorylation can be modulated by inhibition of the checkpoint kinase Chk1. Furthermore, Chk1 inhibition sensitizes polη-deficient cells to the cytotoxic effects of carboplatin. Both hyperphosphorylated RPA2 and the homologous recombination protein Rad51 are present in nuclear foci after cisplatin treatment, but these are separable events in individual cells. These results provide insight into the relationship between cell cycle regulation and processing of platinum-induced DNA damage in human cells when polη-mediated TLS is compromised.


Nucleic Acids Research | 2009

Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis

Holger Stephan; Claire Concannon; Elisabeth Kremmer; Michael P. Carty; Heinz-Peter Nasheuer

The human single-stranded DNA-binding protein, replication protein A (RPA), is regulated by the N-terminal phosphorylation of its 32-kDa subunit, RPA2. RPA2 is hyperphosphorylated in response to various DNA-damaging agents and also phosphorylated in a cell-cycle-dependent manner during S- and M-phase, primarily at two CDK consensus sites, S23 and S29. Here we generated two monoclonal phospho-specific antibodies directed against these CDK sites. These phospho-specific RPA2-(P)-S23 and RPA2-(P)-S29 antibodies recognized mitotically phosphorylated RPA2 with high specificity. In addition, the RPA2-(P)-S23 antibody recognized the S-phase-specific phosphorylation of RPA2, suggesting that during S-phase only S23 is phosphorylated, whereas during M-phase both CDK sites, S23 and S29, are phosphorylated. Immunofluorescence microscopy revealed that the mitotic phosphorylation of RPA2 starts at the onset of mitosis, and dephosphorylation occurs during late cytokinesis. In mitotic cells treated with ionizing radiation (IR), we observed a rapid hyperphosphorylation of RPA2 in addition to its mitotic phosphorylation at S23 and S29, associated with a significant change in the subcellular localization of RPA. Our data also indicate that the RPA2 hyperphosphorylation in response to IR is facilitated by the activity of both ATM and DNA-PK, and is associated with activation of the Chk2 pathway.


Sub-cellular biochemistry | 2010

DNA Polymerase η, a Key Protein in Translesion Synthesis in Human Cells

Séverine Cruet-Hennequart; Kathleen Gallagher; Anna M. Sokòl; Sangamitra Villalan; Áine M. Prendergast; Michael P. Carty

Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.


Micron | 2002

Insights into UV-induced apoptosis: ultrastructure, trichrome stain and spectral imaging.

Marian L. Miller; Anastasia Andringa; Kathleen Dixon; Michael P. Carty

Nuclear substructures associated with apoptosis in HeLa cells have been examined using light-microscopic morphometry, trichrome staining, spectral imaging and transmission electron microscopy. This detailed analysis reveals several sites where alterations in the normal cellular ultrastructure occur during apoptotic progression. To correlate these ultrastructural changes with the underlying molecular processes, we have characterized and quantified apoptotic cell morphology with and without inhibition of two caspases, which are key effectors of the apoptotic program. Using this analysis, early apoptotic events included: (a) the segregation of nucleolar components, a diminished granular component, and a reduction in number but increase in size of fibrillar centers, (b) an increase in the number of cytoplasmic ribosomes and (c) a very minimal increase in the amount of peripherally condensed DNA. Apoptosis progressed with: (a) an increase in the number of perichromatin granules and perichromatin fibrils, (b) a reduction in number of interchromatin granule centers concomitant with an increase in their size, (c) partial digestion and circumferential condensation of the DNA at the nuclear membrane and (d) rounding of the cytoplasm with an increase in organellar density and shrinkage in cell size. Endstage apoptotic cells showed: (a) one (or two) very large pools of incompletely digested DNA, (b) one (or two) very large interchromatin granule centers, (c) an increased number of perichromatin granules which were distanced from DNA and often closely apposed to the nucleolus, (d) formation of unusually condensed, highly coiled perinucleolar bodies and (e) blebbing of highly dense cytoplasm. In HeLa cells treated with UV and inhibitors of caspase 1 and 3, the length of time from early apoptosis to the formation of apoptotic bodies was greatly extended. Inhibiting caspase activity: (a) prevented the pooling of DNA, (b) retarded the formation of large interchromatin granule centers, (c) increased the number of perichromatin granules, (d) produced disassembly of the nucleolus, (e) prevented the formation of highly coiled perinucleolar bodies, and (f) caused vacuolization in the cell center and a unipolar blebbing of the cytoplasm. Spectral imaging in conjunction with serial section electron microscopy confirmed the staining specificities of the condensed DNA, of the large condensed interchromatin granule centers, and of the nucleoli. The results indicate that the interface between the components of the chromatin domain and the interchromatin space is a critical site of caspase activity in apoptosis, and precedes other events such as internucleosomal DNA degradation.


European Journal of Medicinal Chemistry | 2010

Synthesis and toxicity towards normal and cancer cell lines of benzimidazolequinones containing fused aromatic rings and 2-aromatic ring substituents

Eoin Moriarty; Miriam Carr; Sarah Bonham; Michael P. Carty; Fawaz Aldabbagh

A facile 6-exo-trig cyclization of sigma-aromatic radicals has allowed the synthesis of various aromatic ring fused benzimidazoles and benzimidazolequinones. The most highly conjugated naphthyl fused benzimidazolequinone, (5-methyl-5,6-dihydrobenzimidazo[2,1-a]benzo[f]isoquinoline-8,11-dione) showed the highest specificity towards human cervical (HeLa) and prostate (DU145) cancer cell lines with little toxicity towards a human normal (GM00637) cell line at doses of <1 microM. In contrast, 2-aromatic ring substituted (benzimidazole-4,7-diones) analogues, benzimidazolequinone with a pyridine ring and mitomycin C were more toxic than the highly conjugated naphthyl fused benzimidazolequinone towards the normal cell line.


Bioorganic & Medicinal Chemistry | 2012

COMPARE analysis of the toxicity of an iminoquinone derivative of the imidazo[5,4-f]benzimidazoles with NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and computational docking of quinones as NQO1 substrates.

Vincent Fagan; Sarah Bonham; Michael P. Carty; Patricia Saenz-Méndez; Leif A. Eriksson; Fawaz Aldabbagh

Synthesis and cytotoxicity of imidazo[5,4-f]benzimidazolequinones and iminoquinone derivatives is described, enabling structure-activity relationships to be obtained. The most promising compound (an iminoquinone derivative) has undergone National Cancer Institute (NCI) 60 cell line (single and five dose) screening, and using the NCI COMPARE program, has shown correlation to NQO1 activity and to other NQO1 substrates. Common structural features suggest that the iminoquinone moiety is significant with regard to NQO1 specificity. Computational docking into the active site of NQO1 was performed, and the first comprehensive mitomycin C (MMC)-NQO1 docking study is presented. Small distances for hydride reduction and high binding affinities are characteristic of MMC and of iminoquinones showing correlations with NQO1 via COMPARE analysis. Docking also indicated that the presence of a substituent capable of hydrogen bonding to the His194 residue is important in influencing the orientation of the substrate in the NQO1 active site, leading to more efficient reduction.

Collaboration


Dive into the Michael P. Carty's collaboration.

Top Co-Authors

Avatar

Kathleen Dixon

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Fawaz Aldabbagh

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Bonham

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Áine M. Prendergast

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaqin Yao

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Frank Barry

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Liz O'Donovan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Vincent Fagan

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge