Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Desjarlais is active.

Publication


Featured researches published by Michael P. Desjarlais.


Physics of Plasmas | 2005

Pulsed-power-driven high energy density physics and inertial confinement fusion research

M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash

The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...


Modelling and Simulation in Materials Science and Engineering | 2005

Designing meaningful density functional theory calculations in materials science—a primer

Ann E. Mattsson; Peter A. Schultz; Michael P. Desjarlais; Thomas R. Mattsson; Kevin Leung

Density functional theory (DFT) methods for calculating the quantum mechanical ground states of condensed matter systems are now a common and significant component of materials research. The growing importance of DFT reflects the development of sufficiently accurate functionals, efficient algorithms and continuing improvements in computing capabilities. As the materials problems to which DFT is applied have become large and complex, so have the sets of calculations necessary for investigating a given problem. Highly versatile, powerful codes exist to serve the practitioner, but designing useful simulations is a complicated task, involving intricate manipulation of many variables, with many pitfalls for the unwary and the inexperienced. We discuss several of the most important issues that go into designing a meaningful DFT calculation. We emphasize the necessity of investigating these issues and reporting the critical details.


Contributions To Plasma Physics | 2001

Practical Improvements to the Lee‐More Conductivity Near the Metal‐Insulator Transition

Michael P. Desjarlais

The wide-range conductivity model of Lee and More [1] is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere.


Science | 2008

Shock-Wave Exploration of the High-Pressure Phases of Carbon

M. D. Knudson; Michael P. Desjarlais; Daniel H. Dolan

The high–energy density behavior of carbon, particularly in the vicinity of the melt boundary, is of broad scientific interest and of particular interest to those studying planetary astrophysics and inertial confinement fusion. Previous experimental data in the several hundred gigapascal pressure range, particularly near the melt boundary, have only been able to provide data with accuracy capable of qualitative comparison with theory. Here we present shock-wave experiments on carbon (using a magnetically driven flyer-plate technique with an order of magnitude improvement in accuracy) that enable quantitative comparison with theory. This work provides evidence for the existence of a diamond-bc8-liquid triple point on the melt boundary.


Physical Review B | 2008

Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations

Bastian Holst; R. Redmer; Michael P. Desjarlais

We study the thermophysical properties of warm dense hydrogen by using quantum molecular dynamics simulations. Results are presented for the pair distribution functions, the equation of state, and the Hugoniot curve. From the dynamic conductivity, we derive the dc electrical conductivity and the reflectivity. We compare with available experimental data and predictions of the chemical picture. In particular, we discuss the nonmetal-to-metal transition, which occurs at about 40 GPa in the dense fluid.


Science | 2015

Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

M. D. Knudson; Michael P. Desjarlais; Andreas Becker; R.W. Lemke; Kyle Robert Cochrane; M. E. Savage; D.E. Bliss; Thomas R. Mattsson; R. Redmer

Driving liquid deuterium into metal Quick and powerful compression can force materials to change their properties dramatically. Knudson et al. compressed liquid deuterium to extreme temperatures and pressures using high-energy magnetic pulses at the Sandia Z-machine (see the Perspective by Ackland). Deuterium began to reflect like a mirror during compression, as the electrical conductivity sharply increased. The observed conditions for metallization of deuterium and hydrogen help us to build theoretical models for the universes most abundant element. This a our understanding of the internal layering of gas giant planets such as Jupiter and Saturn. Science, this issue p. 1455; see also p. 1429 Magnetic compression drives an insulator-to-metal transition in dense liquid deuterium. [Also see Perspective by Ackland] Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.


Laser and Particle Beams | 1994

Simulation codes for light-ion diode modeling

J. P. Quintenz; D. B. Seidel; Mark L. Kiefer; T.D. Pointon; R. S. Coats; S. E. Rosenthal; Thomas Alan Mehlhorn; Michael P. Desjarlais; N.A. Krall

The computational tools used in the investigation of light-ion diode physics at Sandia National Laboratories are described. Applied-B ion diodes are used to generate intense beams of ions and focus these beams onto targets as part of Sandias inertial confinement fusion program. Computer codes are used to simulate the energy storage and pulse forming sections of the accelerator and the power flow and coupling into the diode where the ion beam is generated. Other codes are used to calculate the applied magnetic field diffusion in the diode region, the electromagnetic fluctuations in the anode-cathode gap, the subsequent beam divergence, the beam propagation, and response of various beam diagnostics. These codes are described and some typical results are shown.


IEEE Transactions on Plasma Science | 1997

Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1-10 TW

Michael Edward Cuneo; P.R. Menge; D.L. Hanson; William E. Fowler; Michael A. Bernard; Gerold R. Ziska; A.B. Filuk; T.D. Pointon; Roger A. Vesey; Dale R. Welch; J. E. Bailey; Michael P. Desjarlais; T.R. Lockner; Thomas Alan Mehlhorn; Steven A. Slutz; Michael A. Stark

Uncontrolled plasma formation on electrode surfaces limits performance in a wide variety of pulsed power devices such as electron and ion diodes, transmission lines, radio frequency (RF) cavities, and microwave devices. Surface and bulk contaminants on the electrodes in vacuum dominate the composition of these plasmas, formed through processes such as stimulated and thermal desorption followed by ionization. We are applying RF discharge cleaning, anode heating, cathode cooling, and substrate surface coatings to the control of the effects of these plasmas in the particular case of applied-B ion diodes on the SABRE (1 TW) and PBFA-X (30 TW) accelerators. Evidence shows that our LiF ion source provides a 200-700 A/cm/sup 2/ lithium beam for 10-20 ns which is then replaced by a contaminant beam of protons and carbon. Other ion sources show similar behavior. Our electrode surface and substrate cleaning techniques reduce beam contamination, anode and cathode plasma formation, delay impedance collapse, and increase lithium energy, power, and production efficiency. Theoretical and simulation models of electron-stimulated and thermal-contaminant desorption leading to anode plasma formation show agreement with many features from experiment. Decrease of the diode electron loss by changing the shape and magnitude of the insulating magnetic field profiles increases the lithium output and changes the diode response to cleaning. We also show that the LiF films are permeable, allowing substrate contaminants to affect diode behavior. Substrate coatings of Ta and Au underneath the LiF film allow some measure of control of substrate contaminants, and provide direct evidence for thermal desorption. We have increased lithium current density by a factor of four and lithium energy by a factor of five through a combination of in situ surface and substrate cleaning, substrate coatings, and field profile modifications.


Physics of Plasmas | 2007

Target design for high fusion yield with the double Z-pinch-driven hohlraum

Roger Alan Vesey; Mark Herrmann; R.W. Lemke; Michael P. Desjarlais; M. E. Cuneo; W. A. Stygar; Guy R. Bennett; Robert B. Campbell; P. J. Christenson; T.A. Mehlhorn; John L. Porter; Stephen A. Slutz

A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3–0.5GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/ca...


Physics of Plasmas | 2008

Three-dimensional effects in trailing mass in the wire-array Z pinch

E. P. Yu; M. E. Cuneo; Michael P. Desjarlais; R.W. Lemke; Daniel Brian Sinars; Thomas A. Haill; E.M. Waisman; Guy R. Bennett; Christopher A. Jennings; T.A. Mehlhorn; T. A. Brunner; Heath L. Hanshaw; John L. Porter; W. A. Stygar; L. I. Rudakov

The implosion phase of a wire-array Z pinch is investigated using three-dimensional (3D) simulations, which model the mass ablation phase and its associated axial instability using a mass injection boundary condition. The physical mechanisms driving the trailing mass network are explored, and it is found that in 3D the current paths though the trailing mass can reduce bubble growth on the imploding plasma sheath, relative to the 2D (r,z) equivalent. Comparison between the simulations and a high quality set of experimental radiographs is presented.

Collaboration


Dive into the Michael P. Desjarlais's collaboration.

Top Co-Authors

Avatar

R.W. Lemke

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Mattsson

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. E. Bailey

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Haill

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Slutz

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Thomas Alan Mehlhorn

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Daniel Brian Sinars

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Kyle Robert Cochrane

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

M. E. Cuneo

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

W. A. Stygar

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge