Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Fitzgerald is active.

Publication


Featured researches published by Michael P. Fitzgerald.


Science | 2008

Optical Images of an Exosolar Planet 25 Light Years from Earth

Paul Kalas; James R. Graham; Eugene Chiang; Michael P. Fitzgerald; Mark Clampin; Edwin S. Kite; Karl R. Stapelfeldt; Christian Marois; John E. Krist

Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planets mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 μm is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 μm and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 μm.


Proceedings of the National Academy of Sciences of the United States of America | 2014

First light of the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Patrick Ingraham; Quinn Konopacky; Christian Marois; Marshall D. Perrin; Lisa A. Poyneer; Brian J. Bauman; Travis Barman; Adam Burrows; Andrew Cardwell; Jeffrey K. Chilcote; Robert J. De Rosa; Daren Dillon; René Doyon; Jennifer Dunn; Darren Erikson; Michael P. Fitzgerald; Donald Gavel; Stephen J. Goodsell; Markus Hartung; Pascale Hibon; Paul Kalas; James E. Larkin; Jérôme Maire; Franck Marchis; Mark S. Marley; James McBride; Max Millar-Blanchaer; Katie M. Morzinski

Bruce Macintosh a , James R. Graham , Patrick Ingraham b , Quinn Konopacky , Christian Marois , Marshall Perrin f , Lisa Poyneer a , Brian Bauman a , Travis Barman , Adam Burrows , Andrew Cardwell , Jeffrey Chilcote j , Robert J. De Rosa , Daren Dillon , Rene Doyon , Jennifer Dunn e , Darren Erikson e , Michael Fitzgerald j , Donald Gavel l , Stephen Goodsell i , Markus Hartung i , Pascale Hibon i , Paul G. Kalas c , James Larkin j , Jerome Maire d , Franck Marchis , Mark Marley , James McBride c , Max Millar-Blanchaer d , Katie Morzinski , Andew Norton l B. R. Oppenheimer , Dave Palmer a , Jennifer Patience k , Laurent Pueyo f , Fredrik Rantakyro i , Naru Sadakuni i , Leslie Saddlemyer e , Dmitry Savransky , Andrew Serio i , Remi Soummer f Anand Sivaramakrishnan f , q Inseok Song , Sandrine Thomas , J. Kent Wallace , Sloane Wiktorowicz l , and Schuyler Wolff vSignificance Direct detection—spatially resolving the light of a planet from the light of its parent star—is an important technique for characterizing exoplanets. It allows observations of giant exoplanets in locations like those in our solar system, inaccessible by other methods. The Gemini Planet Imager (GPI) is a new instrument for the Gemini South telescope. Designed and optimized only for high-contrast imaging, it incorporates advanced adaptive optics, diffraction control, a near-infrared spectrograph, and an imaging polarimeter. During first-light scientific observations in November 2013, GPI achieved contrast performance that is an order of magnitude better than conventional adaptive optics imagers. The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.


Science | 2015

Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Travis Barman; R. J. De Rosa; Quinn Konopacky; Mark S. Marley; Christian Marois; Eric L. Nielsen; Laurent Pueyo; Abhijith Rajan; Julien Rameau; Didier Saumon; Jason J. Wang; Jenny Patience; Mark Ammons; Pauline Arriaga; Étienne Artigau; Steven V. W. Beckwith; J. Brewster; Sebastian Bruzzone; Joanna Bulger; B. Burningham; Adam Burrows; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Rebekah I. Dawson; Ruobing Dong; René Doyon; Zachary H. Draper

An exoplanet extracted from the bright Direct imaging of Jupiter-like exoplanets around young stars provides a glimpse into how our solar system formed. The brightness of young stars requires the use of next-generation devices such as the Gemini Planet Imager (GPI). Using the GPI, Macintosh et al. discovered a Jupiter-like planet orbiting a young star, 51 Eridani (see the Perspective by Mawet). The planet, 51 Eri b, has a methane signature and is probably the smallest exoplanet that has been directly imaged. These findings open the door to understanding solar system origins and herald the dawn of a new era in next-generation planetary imaging. Science, this issue p. 64; see also p. 39 The Gemini Planet Imager detects a Jupiter-like exoplanet orbiting the young star 51 Eridani. [Also see Perspective by Mawet] Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10−6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.


The Astrophysical Journal | 2013

STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b

Paul Kalas; James R. Graham; Michael P. Fitzgerald; Mark Clampin

We present new optical coronagraphic data of Fomalhaut obtained with HST/STIS in 2010 and 2012. Fomalhaut b is recovered at both epochs to high significance. The observations include the discoveries of tenuous nebulosity beyond the main dust belt detected to at least 209 AU projected radius, and a 50 AU wide azimuthal gap in the belt northward of Fomalhaut b. The two epochs of Space Telescope Imaging Spectrograph (STIS) photometry exclude optical variability greater than 35%. A Markov chain Monte Carlo analysis demonstrates that the orbit of Fomalhaut b is highly eccentric, with e = 0.8 ± 0.1, a = 177 ± 68 AU, and q = 32 ± 24 AU. Fomalhaut b is apsidally aligned with the belt and 90% of allowed orbits have mutual inclination ≤36°. Fomalhaut bs orbit is belt crossing in the sky plane projection, but only 12% of possible orbits have ascending or descending nodes within a 25 AU wide belt annulus. The high eccentricity invokes a dynamical history where Fomalhaut b may have experienced a significant dynamical interaction with a hypothetical planet Fomalhaut c, and the current orbital configuration may be relatively short-lived. The Tisserand parameter with respect to a hypothetical Fomalhaut planet at 30 AU or 120 AU lies in the range 2-3, similar to highly eccentric dwarf planets in our solar system. We argue that Fomalhaut bs minimum mass is that of a dwarf planet in order for a circumplanetary satellite system to remain bound to a sufficient radius from the planet to be consistent with the dust scattered light hypothesis. In the coplanar case, Fomalhaut b will collide with the main belt around 2032, and the subsequent emergent phenomena may help determine its physical nature.


Monthly Notices of the Royal Astronomical Society | 2012

99 Herculis: host to a circumbinary polar-ring debris disc

Grant M. Kennedy; Mark C. Wyatt; B. Sibthorpe; Gaspard Duchene; Paul Kalas; Brenda C. Matthews; J. S. Greaves; K. Y. L. Su; Michael P. Fitzgerald

We present resolved Herschel images of a circumbinary debris disk in the 99 Herculis system. The primary is a late F-type star. The binary orbit is well characterised and we conclude that the disk is misaligned with the binary plane. Two different models can explain the observed structure. The first model is a ring of pola r orbits that move in a plane perpendicular to the binary pericenter direction. We favour this interpretation because it includes the effect of secular perturbations and the disk ca n survive for Gyr timescales. The second model is a misaligned ring. Because there is an ambiguity in the orientation of the ring, which could be reflected in the sky plane, this rin g either has near-polar orbits similar to the first model, or has a 30 degree misalignm ent. The misaligned ring, interpreted as the result of a recent collision, is shown to b e implausible from constraints on the collisional and dynamical evolution. Because disk+star systems with separations similar to 99 Herculis should form coplanar, possible formation scenarios involve either a close stellar encounter or binary exchange in the presence of circumstellar and/or circumbinary disks. Discovery and characterisation of systems like 99 Herculis will help understand processes that result in planetary system misalignment around both single and multiple stars.


The Astrophysical Journal | 2007

DISCOVERY OF EXTREME ASYMMETRY IN THE DEBRIS DISK SURROUNDING HD 15115

Paul Kalas; Michael P. Fitzgerald; James R. Graham

We report the first scattered light detection of a dusty debris disk surrounding the F2 V star HD 15115 using the Hubble Space Telescope in the optical and Keck adaptive optics in the near-infrared. The most remarkable property of the HD 15115 disk relative to other debris disks is its extreme length asymmetry. The east side of the disk is detected to ~315 AU radius, whereas the west side of the disk has radius >550 AU. We find a blue optical to near-infrared scattered light color relative to the star that indicates grain scattering properties similar to the AU Mic debris disk. The existence of a large debris disk surrounding HD 15115 adds further evidence for membership in the β Pic moving group, which was previously argued based on kinematics alone. Here we hypothesize that the extreme disk asymmetry is due to dynamical perturbations from HIP 12545, an M star east of HD 15115 that shares a common proper motion vector, heliocentric distance, galactic space velocity, and age.


Proceedings of SPIE | 2014

Gemini Planet Imager observational calibrations I: Overview of the GPI data reduction pipeline

Marshall D. Perrin; Jérôme Maire; Patrick Ingraham; Dmitry Savransky; Max Millar-Blanchaer; Schuyler Wolff; Jean Baptiste Ruffio; Jason J. Wang; Zachary H. Draper; Naru Sadakuni; Christian Marois; Abhijith Rajan; Michael P. Fitzgerald; Bruce A. Macintosh; James R. Graham; René Doyon; James E. Larkin; Jeffrey K. Chilcote; Stephen J. Goodsell; David Palmer; Kathleen Labrie; Mathilde Beaulieu; Robert J. De Rosa; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Quinn Konopacky; David Lafrenière; Jean-Francois Lavigne; Franck Marchis

The Gemini Planet Imager (GPI) has as its science instrument an infrared integral field spectrograph/polarimeter (IFS). Integral field spectrographs are scientificially powerful but require sophisticated data reduction systems. For GPI to achieve its scientific goals of exoplanet and disk characterization, IFS data must be reconstructed into high quality astrometrically and photometrically accurate datacubes in both spectral and polarization modes, via flexible software that is usable by the broad Gemini community. The data reduction pipeline developed by the GPI instrument team to meet these needs is now publicly available following GPI’s commissioning. This paper, the first of a series, provides a broad overview of GPI data reduction, summarizes key steps, and presents the overall software framework and implementation. Subsequent papers describe in more detail the algorithms necessary for calibrating GPI data. The GPI data reduction pipeline is open source, available from planetimager.org, and will continue to be enhanced throughout the life of the instrument. It implements an extensive suite of task primitives that can be assembled into reduction recipes to produce calibrated datasets ready for scientific analysis. Angular, spectral, and polarimetric differential imaging are supported. Graphical tools automate the production and editing of recipes, an integrated calibration database manages reference files, and an interactive data viewer customized for high contrast imaging allows for exploration and manipulation of data.


The Astrophysical Journal | 2006

First Scattered Light Images of Debris Disks around HD 53143 and HD 139664

Paul Kalas; James R. Graham; Mark Clampin; Michael P. Fitzgerald

We present the first scattered light images of debris disks around a K star (HD 53143) and an F star (HD 139664) using the coronagraphic mode of the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). With ages of 0.3-1 Gyr, these are among the oldest optically detected debris disks. HD 53143, viewed ~45° from edge-on, does not show radial variation in disk structure and has a width >55 AU. HD 139664 is seen close to edge-on and has a beltlike morphology with a dust peak 83 AU from the star and a distinct outer boundary at 109 AU. We discuss evidence for significant diversity in the radial architecture of debris disks that appears unconnected to stellar spectral type or age. HD 139664 and possibly the solar system belong in a category of narrow belts 20-30 AU wide. HD 53143 represents a class of wide-disk architecture with a characteristic width >50 AU.


The Astrophysical Journal | 2006

SPECKLE STATISTICS IN ADAPTIVELY CORRECTED IMAGES

Michael P. Fitzgerald; James R. Graham

Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. These speckles can be created by both short-lived atmospheric aberrations and slowly changing distortions in the optical system. Over the course of a long-exposure image, the combination of many independent realizations of speckle patterns forms a halo in the point-spread function (PSF) of characteristic scale Δθ ~ λ/r0 (where r0 is the coherence length in the pupil). While adaptive optics can increase the achievable image contrast, speckle noise remains a major source of random error, which decreases the sensitivity of companion detection observations near the diffraction limit. Knowing the distribution of the speckle intensities at a given location in the image plane is therefore important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ = 2.2 μm). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, that the observed distribution of speckle intensities is consistent with the predicted form. In addition, we demonstrate a method by which Ic and Is can be mapped over the image plane. As the quantity Ic is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.


The Astrophysical Journal | 2015

β PICTORIS' INNER DISK in POLARIZED LIGHT and NEW ORBITAL PARAMETERS for β PICTORIS b

Maxwell A. Millar-Blanchaer; James R. Graham; Laurent Pueyo; Paul Kalas; Rebekah I. Dawson; Jason J. Wang; Marshall D. Perrin; Dae Sik Moon; Bruce A. Macintosh; S. Mark Ammons; Travis Barman; Andrew Cardwell; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Tara Cotten; Robert J. De Rosa; Zachary H. Draper; Jennifer Dunn; Gaspard Duchene; Thomas M. Esposito; Michael P. Fitzgerald; Katherine B. Follette; Stephen J. Goodsell; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Sasha Hinkley; Patrick Ingraham; Rebecca Jensen-Clem

© 2015. The American Astronomical Society. All rights reserved. We present H-band observations of β Pic with the Gemini Planet Imagers (GPIs) polarimetry mode that reveal the debris disk between ∼0.″3 (6 AU) and ∼1.″7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight () with a position angle (PA) (slightly offset from the main outer disk, ), that extends from an inner disk radius of to well outside GPIs field of view. In addition, we present an updated orbit for β Pic b based on new astrometric measurements taken in GPIs spectroscopic mode spanning 14 months. The planet has a semimajor axis of , with an eccentricity The PA of the ascending node is offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of β Pic to Dynamical sculpting by β Pic b cannot easily account for the following three aspects of the inferred disk properties: (1) the modeled inner radius of the disk is farther out than expected if caused by β Pic b; (2) the mutual inclination of the inner disk and β Pic b is when it is expected to be closer to zero; and (3) the aspect ratio of the disk () is larger than expected from interactions with β Pic b or self-stirring by the disks parent bodies.

Collaboration


Dive into the Michael P. Fitzgerald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kalas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Hibon

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Doyon

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge