Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Francis is active.

Publication


Featured researches published by Michael P. Francis.


Biomedical Materials | 2008

Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

Scott A. Sell; Michael P. Francis; Koyal Garg; Michael J. McClure; David G. Simpson; Gary L. Bowlin

The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffolds high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml(-1) were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.


Organogenesis | 2010

Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction.

Michael P. Francis; Patrick C. Sachs; Lynne W. Elmore; Shawn E. Holt

Isolation of adipose-derived stem cells (ASCs) typically involves 8+ hours of intense effort, requiring specialized equipment and reagents. Here, we present an improved technique for isolating viable populations of mesenchymal stem cells from lipoaspirate saline fractions within 30 minutes. Importantly, the cells exhibit remarkable similarities to those obtained using the traditional isolation protocols, in terms of their multipotent differentiation potential and immunophenotype. Reducing the acquisition time of ASCs is critical for advancing regenerative medicine therapeutics, and our approach provides rapid and simple techniques for enhanced isolation and expansion of patient-derived mesenchymal stem cells.


Cell and Tissue Research | 2012

Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites.

Patrick C. Sachs; Michael P. Francis; Min Zhao; Jenni Brumelle; Raj R. Rao; Lynne W. Elmore; Shawn E. Holt

The discovery of adipose-derived stromal cells (ASCs) has created many opportunities for the development of patient-specific cell-based replacement therapies. We have isolated multiple cell strains of ASCs from various anatomical sites (abdomen, arms/legs, breast, buttocks), indicating widespread distribution of ASCs throughout the body. Unfortunately, there exists a general lack of agreement in the literature as to their “stem cell” characteristics. We find that telomerase activity and expression of its catalytic subunit in ASCs are both below the levels of detection, independent of age and culturing conditions. ASCs also undergo telomere attrition and eventually senesce, while maintaining a stable karyotype without the development of spontaneous tumor-associated abnormalities. Using a set of cell surface markers that have been promoted to identify ASCs, we find that they failed to distinguish ASCs from normal fibroblasts, as both are positive for CD29, CD73 and CD105 and negative for CD14, CD31 and CD45. All of the ASC isolates are multipotent, capable of differentiating into osteocytes, chondrocytes and adipocytes, while fibroblasts show no differentiation potential. Our ASC strains also show elevated expression of genes associated with pluripotent cells, Oct-4, SOX2 and NANOG, when compared to fibroblasts and bone marrow-derived mesenchymal stem cells (BM-MSCs), although the levels were lower than induced pluripotent stem cells (iPS). Together, our data suggest that, while the cell surface profile of ASCs does not distinguish them from normal fibroblasts, their differentiation capacity and the expression of genes closely linked to pluripotency clearly define ASCs as multipotent stem cells, regardless of tissue isolation location.


Cancer Biology & Therapy | 2012

Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type

Min Zhao; Patrick C. Sachs; Xu Wang; Catherine I. Dumur; Michael O. Idowu; Valentina Robila; Michael P. Francis; Joy L. Ware; Matthew J. Beckman; Aylin Rizki; Shawn E. Holt; Lynne W. Elmore

Data are accumulating to support a role for adipose-derived mesenchymal stem cells (MSCs) in breast cancer progression; however, to date most studies have relied on adipose MSCs from non-breast sources. There is a particular need to investigate the role of adipose MSCs in the pathogenesis of basal-like breast cancer, which develops at a disproportionate rate in pre-menopausal African-American women with a gain in adiposity. The aim of this study was to better understand how breast adipose MSCs (bMSCs) contribute to the progression of basal-like breast cancers by relying on isogenic HMT-3255 S3 (pre-invasive) and T4-2 (invasive) human cells that upon transplantation into nude mice resemble this tumor subtype. In vitro results suggested that bMSCs may contribute to breast cancer progression in multiple ways. bMSCs readily penetrate extracellular matrix components in part through their expression of matrix metalloproteinases 1 and 3, promote the invasion of T4-2 cells and efficiently chemoattract endothelial cells via a bFGF-independent, VEGF-A-dependent manner. As mixed xenografts, bMSCs stimulated the growth, invasion and desmoplasia of T4-2 tumors, yet these resident stem cells showed no observable effect on the progression of pre-invasive S3 cells. While bMSCs form vessel-like structures within Matrigel both in vitro and in vivo and chemoattract endothelial cells, there appeared to be no difference between T4-2/bMSC mixed xenografts and T4-2 xenografts with regard to intra- or peri-tumoral vascularity. Collectively, our data suggest that bMSCs may contribute to the progression of basal-like breast cancers by stimulating growth and invasion but not vasculogenesis or angiogenesis.


Journal of Biomedical Materials Research Part A | 2012

Electrospinning adipose tissue‐derived extracellular matrix for adipose stem cell culture

Michael P. Francis; Patrick C. Sachs; Parthasarathy Madurantakam; Scott A. Sell; Lynne W. Elmore; Gary L. Bowlin; Shawn E. Holt

Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture. The matrix composition of this purified and electrospun At-ECM was assessed histochemically for basement membrane, connective tissue, collagen, elastic fibers/elastin, glycoprotein, and proteoglycans. Each histochemical stain was positive in fat tissue, purified At-ECM, and electrospun At-ECM, and to some extent positive in a 10:90 blend with polydioxanone (PDO). We also show that electrospun At-ECM, alone and blended with PDO, supports ASC attachment and growth, suggesting that electrospun At-ECM scaffolds support ASC cultivation. These studies show that At-ECM can be isolated and electrospun as a basement membrane-rich tissue engineering matrix capable of supporting stem cells, providing the groundwork for an array of future regenerative medicine advances.


Drug Delivery and Translational Research | 2016

Erratum to: Enhanced osseous integration of human trabecular allografts following surface modification with bioactive lipids

Tiffany Wang; Jack R. Krieger; Cynthia Huang; Anusuya Das; Molly Dickinson; Michael P. Francis; Roy C. Ogle; Edward A. Botchwey

In this study, we used extracellular matrix (ECM) gels and human bone allograft as matrix vehicles to deliver the sphingolipid growth factor FTY720 to rodent models of tibial fracture and a critical-sized cranial defect. We show that FTY720 released from injectable ECM gels may accelerate callous formation and resolution and bone volume in a mouse tibial fracture model. We then show that FTY720 binds directly to human trabecular allograft bone and releases over 1 week in vitro. Rat critical-sized cranial defects treated with FTY720-coated grafts show increases in vascularization and bone deposition, with histological and micro-computed topography (microCT) evidence of enhanced bone formation within the graft and defect void. Immunohistochemical analysis suggests that osteogenesis within FTY720-coated grafts is associated with reduced CD68(+) macrophage infiltration and recruitment of CD29(+) bone progenitor cells. Matrix binding of FTY720 thus represents a promising and robust bone regeneration strategy with potential clinical translatability.


Electrospinning | 2016

Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells

Michael P. Francis; Yas M. Moghaddam-White; Patrick C. Sachs; Matthew J. Beckman; Stephen M. Chen; Gary L. Bowlin; Lynne W. Elmore; Shawn E. Holt

Abstract The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular evidence of osteoblastogenesis. In response to osteogenic differentiation media, ASCs seeded on the Fg scaffolds exhibit elevated expression of multiple genes associated with osteoblastogenesis. Histologic stains and scanning electron microscopy demonstrate widespread mineralization within the scaffolds, as well as de novo type I collagen synthesis. Our data demonstrates that electrospun Fg nanofibers support ASC osteogenic differentiation, yet the scaffold itself does not appear to be osteoinductive. Together, ASCs and Fg recapitulate early stages of bone regeneration ex vivo and presents a prospective autologous therapeutic approach for bone repair.


Archive | 2014

Aligned Fiber and Method of Use Thereof

Michael P. Francis; Roy C. Ogle


Stem Cells International | 2017

Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors

Casey L. Roberts; Silvia S. Chen; Angela Murchison; Rebecca A. Ogle; Michael P. Francis; Roy C. Ogle; Patrick C. Sachs


Archive | 2013

Liquefaction of bone matrix

Michael P. Francis; Roy C. Ogle

Collaboration


Dive into the Michael P. Francis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne W. Elmore

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Roy C. Ogle

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew J. Beckman

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Min Zhao

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia S. Chen

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge