Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Grams is active.

Publication


Featured researches published by Michael P. Grams.


Cancer immunology research | 2015

PD-1 Restrains Radiotherapy-Induced Abscopal Effect

Sean S. Park; Haidong Dong; Xin Liu; Susan M. Harrington; Christopher J. Krco; Michael P. Grams; Aaron S. Mansfield; Keith M. Furutani; Kenneth R. Olivier; Eugene D. Kwon

Park, Dong, and colleagues show in mouse models of melanoma and renal cell carcinoma that stereotactic ablative radiotherapy synergized with PD-1 blockade to induce near-complete regression of the irradiated tumors, and a tumor-specific 66% reduction in the nonirradiated tumors outside the radiation field. We investigated the influence of PD-1 expression on the systemic antitumor response (abscopal effect) induced by stereotactic ablative radiotherapy (SABR) in preclinical melanoma and renal cell carcinoma models. We compared the SABR-induced antitumor response in PD-1–expressing wild-type (WT) and PD-1–deficient knockout (KO) mice and found that PD-1 expression compromises the survival of tumor-bearing mice treated with SABR. None of the PD-1 WT mice survived beyond 25 days, whereas 20% of the PD-1 KO mice survived beyond 40 days. Similarly, PD-1–blocking antibody in WT mice was able to recapitulate SABR-induced antitumor responses observed in PD-1 KO mice and led to increased survival. The combination of SABR plus PD-1 blockade induced near complete regression of the irradiated primary tumor (synergistic effect), as opposed to SABR alone or SABR plus control antibody. The combination of SABR plus PD-1 blockade therapy elicited a 66% reduction in size of nonirradiated, secondary tumors outside the SABR radiation field (abscopal effect). The observed abscopal effect was tumor specific and was not dependent on tumor histology or host genetic background. The CD11ahigh CD8+ T-cell phenotype identifies a tumor-reactive population, which was associated in frequency and function with a SABR-induced antitumor immune response in PD-1 KO mice. We conclude that SABR induces an abscopal tumor-specific immune response in both the irradiated and nonirradiated tumors, which is potentiated by PD-1 blockade. The combination of SABR and PD-1 blockade has the potential to translate into a potent immunotherapy strategy in the management of patients with metastatic cancer. Cancer Immunol Res; 3(6); 610–9. ©2015 AACR.


Neuro-oncology | 2013

Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study

Deanna H. Pafundi; Nadia N. Laack; Ryan S. Youland; Ian F. Parney; Val J. Lowe; Caterina Giannini; Brad Kemp; Michael P. Grams; Jonathan M. Morris; Jason M. Hoover; Leland S. Hu; Jann N. Sarkaria; Debra H. Brinkmann

BACKGROUND Delineation of glioma extent for surgical or radiotherapy planning is routinely based on MRI. There is increasing awareness that contrast enhancement on T1-weighted images (T1-CE) may not reflect the entire extent of disease. The amino acid tracer (18)F-DOPA (3,4-dihydroxy-6-[18F] fluoro-l-phenylalanine) has a high tumor-to-background signal and high sensitivity for glioma imaging. This study compares (18)F-DOPA PET against conventional MRI for neurosurgical biopsy targeting, resection planning, and radiotherapy target volume delineation. METHODS Conventional MR and (18)F-DOPA PET/CT images were acquired in 10 patients with suspected malignant brain tumors. One to 3 biopsy locations per patient were chosen in regions of concordant and discordant (18)F-DOPA uptake and MR contrast enhancement. Histopathology was reviewed on 23 biopsies. (18)F-DOPA PET was quantified using standardized uptake values (SUV) and tumor-to-normal hemispheric tissue (T/N) ratios. RESULTS Pathologic review confirmed glioma in 22 of 23 biopsy specimens. Thirteen of 16 high-grade biopsy specimens were obtained from regions of elevated (18)F-DOPA uptake, while T1-CE was present in only 6 of those 16 samples. Optimal (18)F-DOPA PET thresholds corresponding to high-grade disease based on histopathology were calculated as T/N > 2.0. In every patient, (18)F-DOPA uptake regions with T/N > 2.0 extended beyond T1-CE up to a maximum of 3.5 cm. SUV was found to correlate with grade and cellularity. CONCLUSIONS (18)F-DOPA PET SUV(max) may more accurately identify regions of higher-grade/higher-density disease in patients with astrocytomas and will have utility in guiding stereotactic biopsy selection. Using SUV-based thresholds to define high-grade portions of disease may be valuable in delineating radiotherapy boost volumes.


Sarcoma | 2014

Stereotactic body radiotherapy for metastatic and recurrent ewing sarcoma and osteosarcoma

Lindsay C. Brown; Rachael A. Lester; Michael P. Grams; Michael G. Haddock; Kenneth R. Olivier; Carola Arndt; Peter S. Rose; Nadia N. Laack

Background. Radiotherapy has been utilized for metastatic and recurrent osteosarcoma and Ewing sarcoma (ES), in order to provide palliation and possibly prolong overall or progression-free survival. Stereotactic body radiotherapy (SBRT) is convenient for patients and offers the possibility of increased efficacy. We report our early institutional experience using SBRT for recurrent and metastatic osteosarcoma and Ewing sarcoma. Methods. We reviewed all cases of osteosarcoma or ES treated with SBRT between 2008 and 2012. Results. We identified 14 patients with a total of 27 lesions from osteosarcoma (n = 19) or ES (n = 8). The median total curative/definitive SBRT dose delivered was 40 Gy in 5 fractions (range, 30–60 Gy in 3–10 fractions). The median total palliative SBRT dose delivered was 40 Gy in 5 fractions (range, 16–50 Gy in 1–10 fractions). Two grade 2 and 1 grade 3 late toxicities occurred, consisting of myonecrosis, avascular necrosis with pathologic fracture, and sacral plexopathy. Toxicity was seen in the settings of concurrent chemotherapy and reirradiation. Conclusions. This descriptive report suggests that SBRT may be a feasible local treatment option for patients with osteosarcoma and ES. However, significant toxicity can result, and thus systematic study is warranted to clarify efficacy and characterize long-term toxicity.


International Journal of Radiation Oncology Biology Physics | 2014

Definitive Management of Oligometastatic Melanoma in a Murine Model Using Combined Ablative Radiation Therapy and Viral Immunotherapy.

Miran Blanchard; Kevin G. Shim; Michael P. Grams; Karishma Rajani; Rosa Maria Diaz; Keith M. Furutani; Jill Thompson; Kenneth R. Olivier; Sean S. Park; Svetomir N. Markovic; Hardev Pandha; Alan Melcher; Kevin J. Harrington; Shane Zaidi; Richard Vile

PURPOSE The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy. We have demonstrated in mice that intravenous administration of vesicular stomatitis virus (VSV) expressing defined tumor-associated antigens (TAAs) generates systemic immune responses capable of clearing established tumors. Therefore, in the present preclinical study, we tested whether the combination of systemic VSV-mediated antigen delivery and SABR would be effective against oligometastatic disease. METHODS AND MATERIALS We generated a model of oligometastatic melanoma in C57BL/6 immunocompetent mice and then used a combination of SABR and systemically administered VSV-TAA viral immunotherapy to treat both local and systemic disease. RESULTS Our data showed that SABR generates excellent control or cure of local, clinically detectable, and accessible tumor through direct cell ablation. Also, the immunotherapeutic activity of systemically administered VSV-TAA generated T-cell responses that cleared subclinical metastatic tumors. We also showed that SABR induced weak T-cell-mediated tumor responses, which, particularly if boosted by VSV-TAA, might contribute to control of local and systemic disease. In addition, VSV-TAA therapy alone had significant effects on control of both local and metastatic tumors. CONCLUSIONS We have shown in the present preliminary murine study using a single tumor model that this approach represents an effective, complementary combination therapy model that addresses the need for both systemic and local control in oligometastatic melanoma.


Practical radiation oncology | 2014

Analysis of automatic match results for cone-beam computed tomography localization of conventionally fractionated lung tumors.

Michael P. Grams; Lindsay C. Brown; Debra H. Brinkmann; Deanna H. Pafundi; Daniel W. Mundy; Yolanda I. Garces; Sean S. Park; Kenneth R. Olivier; Luis E. Fong de los Santos

PURPOSE To evaluate the dependence of an automatic match process on the size of the user-defined region of interest (ROI), the structure volume of interest (VOI), and changes in tumor volume when using cone-beam computed tomography (CBCT) for tumor localization and to compare these results with a gold standard defined by a physicians manual match. METHODS AND MATERIALS Daily CBCT images for 11 patients with lung cancer treated with conventionally fractionated radiation therapy were retrospectively matched to a reference CT image using the Varian On Board Imager software (Varian, Palo Alto, CA) and a 3-step automatic matching protocol. Matches were performed with 3 ROI sizes (small, medium, large), with and without a structure VOI (internal target volume [ITV] or planning target volume [PTV]) used in the last step. Additionally, matches were performed using an intensity range that isolated the bony anatomy of the spinal column. All automatic matches were compared with a manual match made by a physician. RESULTS The CBCT images from 109 fractions were analyzed. Automatic match results depend on ROI size and the structure VOI. Compared with the physicians manual match, automatic matches using the PTV as the structure VOI and a small ROI resulted in differences ≥ 5 mm in 1.8% of comparisons. Automatic matches using no VOI and a large ROI differed by ≥ 5 mm in 30.3% of comparisons. Differences between manual and automatic matches using the ITV as the structure VOI increased as tumor size decreased during the treatment course. CONCLUSIONS Users of automatic matching techniques should carefully consider how user-defined parameters affect tumor localization. Automatic matches using the PTV as the structure VOI and a small ROI were most consistent with a physicians manual match, and were independent of volumetric tumor changes.


Practical radiation oncology | 2014

Separating the dosimetric consequences of changing tumor anatomy from positional uncertainty for conventionally fractionated lung cancer patients

Michael P. Grams; Luis E. Fong de los Santos; Lindsay C. Brown; Charles S. Mayo; Sean S. Park; Yolanda I. Garces; Kenneth R. Olivier; Debra H. Brinkmann

PURPOSE To separate the dosimetric consequences of changing tumor volume from positional uncertainty for patients undergoing conventionally fractionated lung radiation therapy (RT) and to quantify which factor has a larger impact on dose to target volumes and organs at risk (OAR). METHODS AND MATERIALS Clinical treatment plans from 20 patients who had received conventionally fractionated RT were retrospectively altered by replacing tumor and atelectasis with lung equivalent tissue in the treatment planning system calculations. To simulate positional uncertainty, the isocenter was shifted in both the altered and original plans by 2 and 5 mm in 6 directions. Rotational uncertainty was introduced by rotating each computed tomographic image set by ± 3 degrees about a superior-inferior axis extending through patient center. Additionally, after rotation the isocenter was translated back to its original point within the patient to evaluate whether purely translational corrections could minimize dosimetric consequences due to rotations. RESULTS Dosimetric statistics for each altered plan were compared with the original. Average changes in the planning target volume (PTV) receiving 95% of prescription dose (PTV V95%) resulting from changing tumor anatomy alone were approximately 0.1%. Average changes in PTV V95% resulting from positional uncertainty were greater (0.2%-4.2%) but were largely independent of whether or not the original tumor volume was present. For 3 patients, increases in volumes receiving 110% of the prescription dose were seen but were largely limited to within the PTV. Translational corrections for patient rotations were effective in minimizing differences in target coverage but had less effect on reducing the maximum spinal cord dose. CONCLUSIONS Anatomic changes alone, such as reductions in tumor volume and atelectasis, had minimal effect on the overall dose distribution. Greater dosimetric consequences were seen with positional uncertainty. With accurate patient localization, replanning during the course of treatment for conventionally fractionated lung cancer patients may not be necessary.


Journal of Applied Clinical Medical Physics | 2016

Treatment planning for metals using an extended CT number scale

John P. Mullins; Michael P. Grams; Michael G. Herman; Debra H. Brinkmann; John A. Antolak

Metal implants which saturate the CT number scale may require dosimetrist and physicist involvement to manually contour and assign an appropriate value to the metal for accurate dose calculation. This study investigated dose calculation based directly on extended CT scale images for different metals and geometries. The aim was to evaluate extended CT accuracy as a suitable alternative to standard CT methods in the presence of high-Z materials and artifacts, despite the reduced HU resolution of extended CT. Gafchromic film measurements were made for comparison to calculated doses. The method of direct dose calculation on extended CT scale was compared to our institutions standard method of manually contouring and assigning metal values on saturated CT images for each of the metal samples. Clinical patient plans with metal implants were investigated and DVHs were compared between standard CT and extended CT dose calculations. Dose calculations showed agreement within 2% between the two methods of metal characterization and the film measurement in the case of the strongest metal attenuator, cobalt-chromium. In the clinical treatment plans, the greatest dose discrepancy between the two methods was 1.2%. This study suggests that direct dose calculation on an extended scale CT image in the presence of metal implants can produce accurate clinically viable treatment plans, thereby improving efficiency of clinical workflow and eliminating a potential source of human error by manual CT number assignment. PACS number(s): 87.55.dk.Metal implants which saturate the CT number scale may require dosimetrist and physicist involvement to manually contour and assign an appropriate value to the metal for accurate dose calculation. This study investigated dose calculation based directly on extended CT scale images for different metals and geometries. The aim was to evaluate extended CT accuracy as a suitable alternative to standard CT methods in the presence of high‐Z materials and artifacts, despite the reduced HU resolution of extended CT. Gafchromic film measurements were made for comparison to calculated doses. The method of direct dose calculation on extended CT scale was compared to our institutions standard method of manually contouring and assigning metal values on saturated CT images for each of the metal samples. Clinical patient plans with metal implants were investigated and DVHs were compared between standard CT and extended CT dose calculations. Dose calculations showed agreement within 2% between the two methods of metal characterization and the film measurement in the case of the strongest metal attenuator, cobalt‐chromium. In the clinical treatment plans, the greatest dose discrepancy between the two methods was 1.2%. This study suggests that direct dose calculation on an extended scale CT image in the presence of metal implants can produce accurate clinically viable treatment plans, thereby improving efficiency of clinical workflow and eliminating a potential source of human error by manual CT number assignment. PACS number(s): 87.55.dk


Medical Physics | 2015

Technical Note: Initial characterization of the new EBT-XD Gafchromic film

Michael P. Grams; Jon M. Gustafson; Kenneth M. Long; Luis E. Fong de los Santos

PURPOSE To assess the dosimetric accuracy and energy dependence of the new EBT-eXtended Dose (XD) Gafchromic film and to compare the lateral response artifact (LRA) between EBT-XD and EBT3 film. METHODS EBT3 and EBT-XD calibration curves were created by exposing films to known doses from 0 to 3000 cGy using a 6 MV beam. To assess the accuracy and dynamic range of EBT-XD, a 60° enhanced dynamic wedge (EDW) was used to deliver a dose range of approximately 200-2900 cGy. Comparison to treatment planning system (TPS) calculation was made using a gamma analysis with 2%/2 mm passing criteria. To assess and compare the LRA between EBT3 and EBT-XD, 21 × 21 cm(2) open fields delivered doses of 1000, 2000, and 3000 cGy to both types of film. Films were placed at the center of the scanner, and ratios of measured to TPS predicted doses were calculated at 50 and 80 mm lateral from the scanner center in order to quantitatively assess the LRA. To evaluate the energy dependence of EBT-XD film, seven known doses ranging from 400 to 3000 cGy were delivered using both 6 and 18 MV beams and the resulting optical densities (ODs) compared. RESULTS The gamma passing rate was 99.1% for the 6 MV EDW delivery. EBT-XD film exhibited minimal LRA (<1%) up to 3000 cGy. In contrast, EBT3 demonstrated an under-response of 11.3% and 22.7% at lateral positions of 50 and 80 mm, respectively, for the 3000 cGy exposure. Differences between ODs of the EBT-XD films exposed to known doses from 6 to 18 MV beams were <0.8% suggesting minimal energy dependence throughout this energy range. CONCLUSIONS The LRA of EBT-XD is greatly reduced when compared to EBT3. This in combination with its accuracy from 0 to 3000 cGy and minimal energy dependence from 6 to 18 MV makes EBT-XD film well suited for dosimetric measurements in high dose SRS/SBRT applications.


International Journal of Radiation Biology | 2014

Design and characterization of an economical 192 Ir hemi-brain small animal irradiator

Michael P. Grams; Zachary C. Wilson; T.T. Sio; C Beltran; Erik Tryggestad; Shiv K. Gupta; Charles Robert Blackwell; Kevin P. McCollough; Jann N. Sarkaria; Keith M. Furutani

Abstract Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Materials and methods: A high dose rate (HDR) 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 cm thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit was equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film measurements. Results: The tungsten collimator provided a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator, and was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring steep dose gradients.


Practical radiation oncology | 2016

Cadaveric verification of the Eclipse AAA algorithm for spine SBRT treatments with titanium hardware.

Michael P. Grams; Luis E. Fong de los Santos; John A. Antolak; Debra H. Brinkmann; Michelle J. Clarke; Sean S. Park; Kenneth R. Olivier; T.J. Whitaker

PURPOSE To assess the accuracy of the Eclipse Analytical Anisotropic Algorithm when calculating dose for spine stereotactic body radiation therapy treatments involving surgically implanted titanium hardware. METHODS AND MATERIALS A human spine was removed from a cadaver, cut sagittally along the midline, and then separated into thoracic and lumbar sections. The thoracic section was implanted with titanium stabilization hardware; the lumbar section was not implanted. Spine sections were secured in a water phantom and simulated for treatment planning using both standard and extended computed tomography (CT) scales. Target volumes were created on both spine sections. Dose calculations were performed using (1) the standard CT scale with relative electron density (RED) override of image artifacts and hardware, (2) the extended CT scale with RED override of image artifacts only, and (3) the standard CT scale with no RED overrides for hardware or artifacts. Plans were delivered with volumetric modulated arc therapy using a 6-MV beam with and without a flattening filter. A total of 3 measurements for each plan were made with Gafchromic film placed between the spine sections and compared with Eclipse dose calculations using gamma analysis with a 2%/2 mm passing criteria. A single measurement in a homogeneous phantom was made for each plan before actual delivery. RESULTS Gamma passing rates for measurements in the homogeneous phantom were 99.6% or greater. Passing rates for measurements made in the lumbar spine section without hardware were 99.3% or greater; measurements made in the thoracic spine containing titanium were 98.6 to 99.5%. CONCLUSIONS Eclipse Analytical Anisotropic Algorithm can adequately model the effects of titanium implants for spine stereotactic body radiation therapy treatments using volumetric modulated arc therapy. Calculations with standard or extended CT scales give similarly accurate results.

Collaboration


Dive into the Michael P. Grams's collaboration.

Researchain Logo
Decentralizing Knowledge