Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Harms is active.

Publication


Featured researches published by Michael P. Harms.


NeuroImage | 2013

Resting-state fMRI in the Human Connectome Project

Stephen M. Smith; Christian F. Beckmann; Jesper Andersson; Edward J. Auerbach; Janine D. Bijsterbosch; Gwenaëlle Douaud; Eugene P. Duff; David A. Feinberg; Ludovica Griffanti; Michael P. Harms; Michael Kelly; Timothy O. Laumann; Karla L. Miller; Steen Moeller; S.E. Petersen; Jonathan D. Power; Gholamreza Salimi-Khorshidi; Avi Snyder; An T. Vu; Mark W. Woolrich; Junqian Xu; Essa Yacoub; Kamil Ugurbil; D. C. Van Essen; Matthew F. Glasser

Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other being diffusion MRI). A key objective is to generate a detailed in vivo mapping of functional connectivity in a large cohort of healthy adults (over 1000 subjects), and to make these datasets freely available for use by the neuroimaging community. In each subject we acquire a total of 1h of whole-brain rfMRI data at 3 T, with a spatial resolution of 2×2×2 mm and a temporal resolution of 0.7s, capitalizing on recent developments in slice-accelerated echo-planar imaging. We will also scan a subset of the cohort at higher field strength and resolution. In this paper we outline the work behind, and rationale for, decisions taken regarding the rfMRI data acquisition protocol and pre-processing pipelines, and present some initial results showing data quality and example functional connectivity analyses.


NeuroImage | 2013

Function in the human connectome: task-fMRI and individual differences in behavior.

Gregory C. Burgess; Michael P. Harms; S.E. Petersen; Bradley L. Schlaggar; Maurizio Corbetta; Matthew F. Glasser; Sandra W. Curtiss; S Dixit; C Feldt; D Nolan; E Bryant; T Hartley; O Footer; James M. Bjork; Russell A. Poldrack; Stephen M. Smith; Heidi Johansen-Berg; Avi Snyder; D. C. Van Essen

The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both group and individual levels.


JAMA Pediatrics | 2013

The Effects of Poverty on Childhood Brain Development: The Mediating Effect of Caregiving and Stressful Life Events

Joan L. Luby; Andy C. Belden; Kelly N. Botteron; Natasha Marrus; Michael P. Harms; Casey M. Babb; Tomoyuki Nishino; Deanna

IMPORTANCE The study provides novel data to inform the mechanisms by which poverty negatively impacts childhood brain development. OBJECTIVE To investigate whether the income-to-needs ratio experienced in early childhood impacts brain development at school age and to explore the mediators of this effect. DESIGN, SETTING, AND PARTICIPANTS This study was conducted at an academic research unit at the Washington University School of Medicine in St Louis. Data from a prospective longitudinal study of emotion development in preschool children who participated in neuroimaging at school age were used to investigate the effects of poverty on brain development. Children were assessed annually for 3 to 6 years prior to the time of a magnetic resonance imaging scan, during which they were evaluated on psychosocial, behavioral, and other developmental dimensions. Preschoolers included in the study were 3 to 6 years of age and were recruited from primary care and day care sites in the St Louis metropolitan area; they were annually assessed behaviorally for 5 to 10 years. Healthy preschoolers and those with clinical symptoms of depression participated in neuroimaging at school age/early adolescence. EXPOSURE Household poverty as measured by the income-to-needs ratio. MAIN OUTCOMES AND MEASURES Brain volumes of childrens white matter and cortical gray matter, as well as hippocampus and amygdala volumes, obtained using magnetic resonance imaging. Mediators of interest were caregiver support/hostility measured observationally during the preschool period and stressful life events measured prospectively. RESULTS Poverty was associated with smaller white and cortical gray matter and hippocampal and amygdala volumes. The effects of poverty on hippocampal volume were mediated by caregiving support/hostility on the left and right, as well as stressful life events on the left. CONCLUSIONS AND RELEVANCE The finding that exposure to poverty in early childhood materially impacts brain development at school age further underscores the importance of attention to the well-established deleterious effects of poverty on child development. Findings that these effects on the hippocampus are mediated by caregiving and stressful life events suggest that attempts to enhance early caregiving should be a focused public health target for prevention and early intervention. Findings substantiate the behavioral literature on the negative effects of poverty on child development and provide new data confirming that effects extend to brain development. Mechanisms for these effects on the hippocampus are suggested to inform intervention.


NeuroImage | 2014

MSM: a new flexible framework for Multimodal Surface Matching.

Emma C. Robinson; Saâd Jbabdi; Matthew F. Glasser; Jesper Andersson; Gregory C. Burgess; Michael P. Harms; Stephen M. Smith; David C. Van Essen; Mark Jenkinson

Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.


Psychiatry Research-neuroimaging | 2010

Anterior thalamic radiation integrity in schizophrenia: A diffusion-tensor imaging study

Daniel Mamah; Thomas E. Conturo; Michael P. Harms; Erbil Akbudak; Lei Wang; Amanda R. McMichael; Mokhtar H. Gado; M Deanna; John G. Csernansky

The anterior limb of the internal capsule (ALIC) is a white matter structure, the medial portion of which includes the anterior thalamic radiation (ATR) carrying nerve fibers between thalamus and prefrontal cortex. ATR abnormalities have a possible link with cognitive abnormalities and negative symptoms in schizophrenia. We aimed to study the fiber integrity of the ATR more selectively by isolating the medial portion of the ALIC using region-of-interest based methodology. Diffusion-tensor imaging was used to measure the anisotropy of total ALIC (tALIC) and medial ALIC (mALIC) in 39 schizophrenia and 33 control participants, matched for age/gender/handedness. Relationships between anisotropy, psychopathology, and cognitive performance were analyzed. Compared with controls, schizophrenia participants had 4.55% lower anisotropy in right tALIC, and 5.38% lower anisotropy in right mALIC. There were no significant group anisotropy differences on the left. Significant correlations were observed between right ALIC integrity and relevant domains of cognitive function (e.g., executive function, working memory). Our study suggests an asymmetric microstructural change in ALIC in schizophrenia involving the right side, which is only minimally stronger in mALIC, and which correlates with cognitive impairment. Microstructural changes in the ALIC may be linked to cognitive dysfunction in schizophrenia.


Schizophrenia Research | 2008

Temperament and character as schizophrenia-related endophenotypes in non-psychotic siblings

Matthew J. Smith; C. Robert Cloninger; Michael P. Harms; John G. Csernansky

BACKGROUND Quantitative endophenotypes are needed to better understand the pathogenesis of schizophrenia. The psychobiological model of temperament and character suggests that personality traits are heritable and regulated by brain systems influencing schizophrenia susceptibility. Thus, measures of temperament and character may serve as schizophrenia-related endophenotypes in individuals with schizophrenia and their non-psychotic siblings. METHODS Individuals with schizophrenia (n=35), their non-psychotic siblings (n=34), controls (n=63), and their siblings (n=56) participated in a study of the clinical, neurocognitive and neuromorphological characteristics of schizophrenia. A mixed-model approach assessed group differences on the Temperament and Character Inventory (TCI). Neurocognitive deficits and psychopathology were correlated with the TCI. Configurations of TCI domains were examined using a generalized linear model. RESULTS Individuals with schizophrenia and their non-psychotic siblings had higher harm avoidance than controls and their siblings. Individuals with schizophrenia had lower self-directedness and cooperativeness, and higher self-transcendence than their non-psychotic siblings, controls, and the siblings of controls. Neurocognition was not related to temperament and character in individuals with schizophrenia or either control group. In non-psychotic siblings, self-directedness and cooperativeness were correlated with working memory and crystallized IQ. CONCLUSION Evidence supports harm avoidance as a schizophrenia-related endophenotype. An increased risk of schizophrenia may be associated with asociality (configured as high harm avoidance and low reward dependence), schizotypy (configured as low self-directedness, low cooperativeness, and high self-transcendence), and neurocognitive deficits (poor executive functioning, working/episodic memory, attention, and low IQ). The non-psychotic siblings demonstrated features of a mature character profile including strong crystallized IQ, which may confer protection against psychopathology.


The Journal of Neuroscience | 2007

Thalamic Shape Abnormalities in Individuals with Schizophrenia and Their Nonpsychotic Siblings

Michael P. Harms; Lei Wang; Daniel Mamah; M Deanna; Paul A. Thompson; John G. Csernansky

Deficits in the volume of the thalamus have been observed in both individuals with schizophrenia and their nonpsychotic relatives. However, no studies to date have examined the underlying pattern of thalamic shape change in relatives of individuals with schizophrenia. This study examined the volume and shape of the thalamus in schizophrenia subjects, their siblings, and healthy control individuals. T1-weighted magnetic resonance scans were collected in a group of young subjects with schizophrenia (mean age, 23 years) and their nonpsychotic siblings (n = 25 pairs), and control subjects and their siblings (n = 40 pairs). Thalamic surfaces were generated using high-dimensional brain mapping. A canonical weighting function was derived from the contrast between schizophrenia and control subjects and then used to generate a canonical shape score for all subjects. Maps of the estimated surface displacement between groups were also created to visualize the thalamic shape differences between groups. The thalamic canonical scores of the siblings of the schizophrenia probands were intermediate between the probands and healthy control subjects. These siblings also displayed an intermediate degree of the inward surface deformation of the anterior and posterior thalamus that was present between schizophrenia probands and controls. There was no main effect of group status on thalamic volume and no significant correlations of the structural measures with measures of psychopathology or cognitive function. Our results indicate that thalamic shape abnormalities are present in relatively young individuals with schizophrenia and their siblings. Inward deformation of the anterior and posterior regions of the thalamus represents a potential neuroanatomical endophenotype of schizophrenia.


NeuroImage | 2013

Human Connectome Project informatics: quality control, database services, and data visualization.

Daniel S. Marcus; Michael P. Harms; Abraham Z. Snyder; Mark Jenkinson; J. Anthony Wilson; Matthew F. Glasser; M Deanna; Kevin A. Archie; Gregory C. Burgess; Mohana Ramaratnam; Michael R. Hodge; William Horton; Rick Herrick; Timothy R. Olsen; Michael McKay; Matthew House; Michael Hileman; Erin Reid; John W. Harwell; Timothy S. Coalson; Jon Schindler; Jennifer Stine Elam; Sandra W. Curtiss; David C. Van Essen

The Human Connectome Project (HCP) has developed protocols, standard operating and quality control procedures, and a suite of informatics tools to enable high throughput data collection, data sharing, automated data processing and analysis, and data mining and visualization. Quality control procedures include methods to maintain data collection consistency over time, to measure head motion, and to establish quantitative modality-specific overall quality assessments. Database services developed as customizations of the XNAT imaging informatics platform support both internal daily operations and open access data sharing. The Connectome Workbench visualization environment enables user interaction with HCP data and is increasingly integrated with the HCPs database services. Here we describe the current state of these procedures and tools and their application in the ongoing HCP study.


Neuropsychopharmacology | 2014

Stress-System Genes and Life Stress Predict Cortisol Levels and Amygdala and Hippocampal Volumes in Children

David Pagliaccio; Joan L. Luby; Ryan Bogdan; Arpana Agrawal; Michael S. Gaffrey; Andrew C. Belden; Kelly N. Botteron; Michael P. Harms; Deanna M

Depression has been linked to increased cortisol reactivity and differences in limbic brain volumes, yet the mechanisms underlying these alterations are unclear. One main hypothesis is that stress causes these effects. This is supported by animal studies showing that chronic stress or glucocorticoid administration can lead to alterations in hippocampal and amygdala structures. Relatedly, life stress is cited as one of the major risk factors for depression and candidate gene studies have related variation in stress-system genes to increased prevalence and severity of depression. The present study tested the hypothesis that genetic profile scores combining variance across 10 single nucleotide polymorphisms from four stress-system genes (CRHR1, NR3C2, NR3C1, and FKBP5) and early life stress would predict increases in cortisol levels during laboratory stressors in 120 preschool-age children (3–5 years old), as well as hippocampal and amygdala volumes assessed with MRI in these same children at school age (7–12 years old). We found that stress-system genetic profile scores positively predicted cortisol levels while the number of stressful/traumatic life events experienced by 3–5 years old negatively predicted cortisol levels. The interaction of genetic profile scores and early life stress predicted left hippocampal and left amygdala volumes. Cortisol partially mediated the effects of genetic variation and life stress on limbic brain volumes, particularly on left amygdala volume. These results suggest that stress-related genetic and early environmental factors contribute to variation in stress cortisol reactivity and limbic brain volumes in children, phenotypes associated with depression in adulthood.


Biological Psychiatry | 2008

Progressive Deformation of Deep Brain Nuclei and Hippocampal-Amygdala Formation in Schizophrenia

Lei Wang; Daniel Mamah; Michael P. Harms; Meghana S. Karnik; Joseph L. Price; Mokhtar H. Gado; Paul A. Thompson; M Deanna; Michael I. Miller; John G. Csernansky

BACKGROUND Progressive decreases in cortical gray matter volume have been reported in schizophrenia. However, studies of progressive change in deep brain nuclei and hippocampal-amygdala formation have not yielded consistent findings. METHODS Two high-resolution, T1-weighted magnetic resonance images were collected 2 years apart in 56 schizophrenia and 62 control subjects. Large-deformation high-dimensional brain mapping was used to generate surfaces for deep brain nuclei and hippocampal-amygdala formation at baseline and follow-up. Repeated-measures analysis of variance was used to test for longitudinal changes in volume and shape. RESULTS The pattern of progressive changes in the deep brain nuclei and hippocampal-amygdala formation in schizophrenia and control subjects was variable. Of the structures that receive direct projections from the cortex, the thalamus, caudate nucleus, nucleus accumbens, and hippocampus showed changes specific to subjects with schizophrenia, and changes in the amygdala and putamen were similar in both groups. Although different at baseline, no progressive change was observed in the globus pallidus, which does not receive direct projections from the cortex. CONCLUSIONS These findings suggest that the disease process of schizophrenia is associated with progressive effects on brain structure and that brain structures that receive direct, excitatory connections from the cortex may be more likely to show progressive changes, compared with brain structures that receive indirect, inhibitory connections from the cortex. These findings are also somewhat consistent with the hypothesis that overactivity of excitatory pathways in the brain may contribute to the neural degeneration that occurs in at least a subgroup of individuals with schizophrenia.

Collaboration


Dive into the Michael P. Harms's collaboration.

Top Co-Authors

Avatar

M Deanna

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Wang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Joan L. Luby

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gregory C. Burgess

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Matthew F. Glasser

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Andy C. Belden

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David C. Van Essen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kelly N. Botteron

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge