Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P.I. Becker is active.

Publication


Featured researches published by Michael P.I. Becker.


The Journal of Neuroscience | 2003

Expression and Function of Chloride Transporters during Development of Inhibitory Neurotransmission in the Auditory Brainstem

Veeramuthu Balakrishnan; Michael P.I. Becker; Stefan Löhrke; Hans Gerd Nothwang; Erdem Güresir; Eckhard Friauf

Glycine and GABA, the dominant inhibitory neurotransmitters in the CNS, assume a depolarizing role in early development, leading to increased cytoplasmic Ca2+ levels and action potentials. The effect is thought to be of some significance for maturation. The depolarization is caused by Cl− efflux, and chloride transporters contribute to the phenomenon by raising the intracellular Cl− concentration ([Cl−]i) above equilibrium, thereby generating an outward-directed electrochemical gradient for Cl−. In mature neurons, the [Cl−]i is reduced below equilibrium, thus rendering glycine activity hyperpolarizing. Here, we investigated the temporal expression of the K-Cl cotransporter KCC2 and the Na-K-Cl cotransporter NKCC1 in the lateral superior olive (LSO) of rats and mice. The two cation cotransporters normally extrude and accumulate Cl−, respectively. As evidenced by several methods, KCC2 mRNA was present in LSO neurons during both the depolarizing and hyperpolarizing periods. Western blots confirmed a constant level of KCC2 in the brainstem, and immunohistochemistry showed that the protein is diffusely distributed within neonatal LSO neurons, becoming integrated into the plasma membrane only with increasing age. The glycine reversal potential in KCC2 knock-out mice differed significantly from that determined in wild-type controls at postnatal day 12 (P12) but not at P3, demonstrating that KCC2 is not active in neonates, despite its early presence. NKCC1 mRNA was not detected during the depolarizing phase in the LSO, implying that this transporter does not contribute to the high [Cl−]i. Our results reveal major differences in the development of [Cl−]i regulation mechanisms seen in brainstem versus forebrain regions.


The Journal of Neuroscience | 2014

A Single-Trial Estimation of the Feedback-Related Negativity and Its Relation to BOLD Responses in a Time-Estimation Task

Michael P.I. Becker; Alexander M. Nitsch; Wolfgang H. R. Miltner; Thomas Straube

An event-related potential (ERP) component reliably associated with feedback processing and well studied in humans is the feedback-related negativity (FRN), which is assumed to indicate activation of midcingulate cortex (MCC) neurons. However, recent approaches have conceptualized this frontocentral ERP component as reflecting at least partially a reward positivity associated with activation in reward-related brain regions, in line with fMRI studies investigating feedback processing in the context of reward evaluation. To discover convergence of electrophysiological and BOLD responses elicited by performance feedback, we concurrently recorded EEG and fMRI during a time-estimation task. The ERP showed relatively more negative amplitudes to negative than to positive feedback. Conventional analyses of fMRI data revealed activation of a number of areas, including ventral striatum, anterior cingulate cortex, and medial prefrontal cortex to positive versus negative feedback. Most importantly, when using single-trial amplitudes of electrophysiological feedback signals to estimate hemodynamic responses, we found feedback-related BOLD-responses in ventral striatum, midcingulate, and midfrontal cortices to positive but not to negative feedback associated with feedback signals in the time range of the FRN. Specifically, activation in these areas increased as amplitudes became more positive. These findings suggest that, in the time-estimation task, a positivity elicited by reward is associated with brain activation in several reward-related brain regions and is driving differential ERP responses in the time range of the FRN.


Human Brain Mapping | 2016

Phasic and sustained brain responses in the amygdala and the bed nucleus of the stria terminalis during threat anticipation.

Martin J. Herrmann; Stephanie Boehme; Michael P.I. Becker; Sara V. Tupak; Anne Guhn; Brigitte Schmidt; Leonie Brinkmann; Thomas Straube

Several lines of evidence suggest that the amygdala and the bed nucleus of the stria terminalis (BNST) are differentially involved in phasic and sustained fear. Even though, results from neuroimaging studies support this distinction, a specific effect of a temporal dissociation with phasic responses to onset versus sustained responses during prolonged states of threat anticipation has not been shown yet. To explore this issue, we investigated brain activation during anticipation of threat in 38 healthy participants by means of functional magnetic resonance imaging. Participants were presented different visual cues indicated the temporally unpredictable occurrence of a subsequent aversive or neutral stimulus. During the onset of aversive versus neutral anticipatory cues, results showed a differential phasic activation of amygdala, anterior cingulate cortex (ACC), and ventrolateral prefrontal cortex (PFC). In contrast, activation in the BNST and other brain regions, including insula, dorsolateral PFC, ACC, cuneus, posterior cingulate cortex, and periaqueductal grey was characterized by a sustained response during the threat versus neutral anticipation period. Analyses of functional connectivity showed phasic amygdala response as positively associated with activation, mainly in sensory cortex areas whereas sustained BNST activation was negatively associated with activation in visual cortex and positively correlated with activation in the insula and thalamus. These findings suggest that the amygdala is responsive to the onset of cues signaling the unpredictable occurrence of a potential threat while the BNST in concert with other areas is involved in sustained anxiety. Furthermore, the amygdala and BNST are characterized by distinctive connectivity patterns during threat anticipation. Hum Brain Mapp 37:1091–1102, 2016.


Social Cognitive and Affective Neuroscience | 2014

Altered emotional and BOLD responses to negative, positive and ambiguous performance feedback in OCD

Michael P.I. Becker; Alexander M. Nitsch; Ralf G.M. Schlösser; K. Koch; Claudia Schachtzabel; Gerd Wagner; Wolfgang H. R. Miltner; Thomas Straube

While abnormal processing of performance feedback has been associated with obsessive-compulsive disorder (OCD), neural responses to different kinds of feedback information, especially to ambiguous feedback are widely unknown. Using fMRI and a performance adaptive time-estimation task, we acquired blood oxygenation level-dependant responses and emotional ratings to positive, negative and ambiguous performance feedback in patients and healthy controls. Negative and ambiguous feedback led to increased levels of anxiety, guilt and shame in patients. Both negative and ambiguous feedback, as compared to positive feedback, induced increased activation of the insular cortex in patients. Furthermore, patients showed no differential activation to negative feedback in the putamen and to ambiguous feedback in the ventromedial prefrontal cortex (VMPFC). Finally, negative feedback induced increased activation in the midcingulate cortex in patients compared to controls. Findings indicate that both negative and ambiguous performance feedbacks are associated with abnormal negative emotions and altered brain activation, in particular increased insula activation, while activation in the putamen and VMPFC does not differentiate between feedback types in OCD patients. This suggests a parallel pattern of increased and decreased neural sensitivity to different kinds of feedback information and a general emotional hyperresponsivity to negative and ambiguous performance feedback in OCD.


Biology of Mood & Anxiety Disorders | 2014

Area-dependent time courses of brain activation during video-induced symptom provocation in social anxiety disorder

Stephanie Boehme; Alexander Mohr; Michael P.I. Becker; Wolfgang H. R. Miltner; Thomas Straube

BackgroundPrevious functional imaging studies using symptom provocation in patients with social anxiety disorder (SAD) reported inconsistent findings, which might be at least partially related to different time-dependent activation profiles in different brain areas. In the present functional magnetic resonance imaging study, we used a novel video-based symptom provocation design in order to investigate the magnitude and time course of activation in different brain areas in 20 SAD patients and 20 healthy controls.ResultsThe disorder-related videos induced increased anxiety in patients with SAD as compared to healthy controls. Analyses of brain activation to disorder-related versus neutral video clips revealed amygdala activation during the first but not during the second half of the clips in patients as compared to controls. In contrast, the activation in the insula showed a reversed pattern with increased activation during the second but not during the first half of the video clips. Furthermore, a cluster in the anterior dorsal anterior cingulate cortex showed a sustained response for the entire duration of the videos.ConclusionsThe present findings suggest that different regions of the fear network show differential temporal response patterns during video-induced symptom provocation in SAD. While the amygdala is involved during initial threat processing, the insula seems to be more involved during subsequent anxiety responses. In accordance with cognitive models of SAD, a medial prefrontal region engaged in emotional-cognitive interactions is generally hyperactivated.


Human Brain Mapping | 2017

Dissociation between amygdala and bed nucleus of the stria terminalis during threat anticipation in female post‐traumatic stress disorder patients

Leonie Brinkmann; Christine Buff; Paula Neumeister; Sara V. Tupak; Michael P.I. Becker; Martin J. Herrmann; Thomas Straube

Feelings of uncontrollability and anxiety regarding possibly harmful events are key features of post‐traumatic stress disorder (PTSD) symptomatology. Due to a lack of studies, the neural correlates of anticipatory anxiety in PTSD are still poorly understood. During functional magnetic resonance imaging, female PTSD patients with interpersonal violence trauma and healthy controls (HC) anticipated the temporally unpredictable presentation of aversive (human scream) or neutral sounds. Based on separate analysis models, we investigated phasic and sustained brain activations. PTSD patients reported increased anxiety during anticipation of aversive versus neutral sounds. Furthermore, we found both increased initial, phasic amygdala activation and increased sustained activation of the bed nucleus of the stria terminalis (BNST) during anticipation of aversive versus neutral sounds in PTSD patients in comparison to HC. PTSD patients as compared with HC also showed increased phasic responses in mid‐cingulate cortex (MCC), posterior cingulate cortex (PCC), mid‐insula and lateral prefrontal cortex (PFC) as well as increased sustained responses in MCC, PCC, anterior insula and lateral and medial PFC. Our results demonstrate a relationship between anticipatory anxiety in PTSD patients and hyperresponsiveness of brain regions that have previously been associated with PTSD symptomatology. Additionally, the dissociation between amygdala and BNST indicates distinct temporal and functional characteristics and suggests that phasic fear and sustained anxiety responses are enhanced during unpredictable anticipation of aversive stimuli in PTSD. Hum Brain Mapp 38:2190–2205, 2017.


NeuroImage | 2014

Effects of social context on feedback-related activity in the human ventral striatum

Doerte Simon; Michael P.I. Becker; Martin Mothes-Lasch; Wolfgang H. R. Miltner; Thomas Straube

It is now well established that activation of the ventral striatum (VS) encodes feedback related information, in particular, aspects of feedback validity, reward magnitude, and reward probability. More recent findings also point toward a role of VS in encoding social context of feedback processing. Here, we investigated the effect of social observation on neural correlates of feedback processing. To this end, subjects performed a time estimation task and received positive, negative, or uninformative feedback. In one half of the experiment subjects thought that an experimenter closely monitored their face via a camera. We successfully replicated an elevated VS response to positive relative to negative feedback. Further, our data demonstrate that this reward-related activation of the VS is increased during observation by others. Using uninformative feedback as reference condition, we show that specifically VS activation during positive feedback was modulated by observation manipulation. Our findings support accounts which posit a role of VS in integrating social context into the processing of feedback and, in doing so, signaling its social relevance.


Psychological Medicine | 2017

Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder

Leonie Brinkmann; Christine Buff; Katharina Feldker; Sara V. Tupak; Michael P.I. Becker; Martin J. Herrmann; Thomas Straube

BACKGROUND Panic disorder (PD) patients are constantly concerned about future panic attacks and exhibit general hypersensitivity to unpredictable threat. We aimed to reveal phasic and sustained brain responses and functional connectivity of the amygdala and the bed nucleus of the stria terminalis (BNST) during threat anticipation in PD. METHODS Using functional magnetic resonance imaging (fMRI), we investigated 17 PD patients and 19 healthy controls (HC) during anticipation of temporally unpredictable aversive and neutral sounds. We used a phasic and sustained analysis model to disentangle temporally dissociable brain activations. RESULTS PD patients compared with HC showed phasic amygdala and sustained BNST responses during anticipation of aversive v. neutral stimuli. Furthermore, increased phasic activation was observed in anterior cingulate cortex (ACC), insula and prefrontal cortex (PFC). Insula and PFC also showed sustained activation. Functional connectivity analyses revealed partly distinct phasic and sustained networks. CONCLUSIONS We demonstrate a role for the BNST during unpredictable threat anticipation in PD and provide first evidence for dissociation between phasic amygdala and sustained BNST activation and their functional connectivity. In line with a hypersensitivity to uncertainty in PD, our results suggest time-dependent involvement of brain regions related to fear and anxiety.


Social Cognitive and Affective Neuroscience | 2017

Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder

Christine Buff; Leonie Brinkmann; Maximilian Bruchmann; Michael P.I. Becker; Sara V. Tupak; Martin J. Herrmann; Thomas Straube

Abstract Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD.


NeuroImage | 2016

Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.

Michael P.I. Becker; Alexander M. Nitsch; Johannes Hewig; Wolfgang H. R. Miltner; Thomas Straube

Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE.

Collaboration


Dive into the Michael P.I. Becker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge