Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. O'Connell is active.

Publication


Featured researches published by Michael P. O'Connell.


Journal of Biological Chemistry | 2007

The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition

Samudra K. Dissanayake; Michael Wade; Carrie E. Johnson; Michael P. O'Connell; Poloko D. Leotlela; Amanda D. French; Kavita V. Shah; Kyle J. Hewitt; Devin T. Rosenthal; Fred E. Indig; Yuan Jiang; Brian J. Nickoloff; Dennis D. Taub; Jeffrey M. Trent; Randall T. Moon; Michael L. Bittner; Ashani T. Weeraratna

We have shown that Wnt5A increases the motility of melanoma cells. To explore cellular pathways involving Wnt5A, we compared gain-of-function (WNT5A stable transfectants) versus loss-of-function (siRNA knockdown) of WNT5A by microarray analysis. Increasing WNT5A suppressed the expression of several genes, which were re-expressed after small interference RNA-mediated knockdown of WNT5A. Genes affected by WNT5A include KISS-1, a metastasis suppressor, and CD44, involved in tumor cell homing during metastasis. This could be validated at the protein level using both small interference RNA and recombinant Wnt5A (rWnt5A). Among the genes up-regulated by WNT5A was the gene vimentin, associated with an epithelial to mesenchymal transition (EMT), which involves decreases in E-cadherin, due to up-regulation of the transcriptional repressor, Snail. rWnt5A treatment increases Snail and vimentin expression, and decreases E-cadherin, even in the presence of dominant-negativeTCF4, suggesting that this activation is independent of Wnt/β-catenin signaling. Because Wnt5A can signal via protein kinase C (PKC), the role of PKC in Wnt5A-mediated motility and EMT was also assessed using PKC inhibition and activation studies. Treating cells expressing low levels of Wnt5A with phorbol ester increased Snail expression inhibiting PKC in cells expressing high levels of Wnt5A decreased Snail. Furthermore, inhibition of PKC before Wnt5A treatment blocked Snail expression, implying that Wnt5A can potentiate melanoma metastasis via the induction of EMT in a PKC-dependent manner.


Journal of Biological Chemistry | 2007

Heparan Sulfate Proteoglycans (HSPGs) Modulate BMP2 Osteogenic Bioactivity in C2C12 Cells

Xiangyang Jiao; Paul C. Billings; Michael P. O'Connell; Frederick S. Kaplan; Eileen M. Shore; David L. Glaser

Cell surface heparan sulfate proteoglycans (HSPGs) have been implicated in bone morphogenetic protein (BMP)-mediated morphogenesis by regulating BMP activity and gradient formation. However, the direct role of HSPGs in BMP signaling is poorly understood. Here we show that HSPGs directly regulate BMP2-mediated transdifferentiation of C2C12 myoblasts into osteoblasts. HSPGs sequester BMP2 at the cell surface and mediate BMP2 internalization. Depletion of cell surface HSPGs by heparinase III treatment or decreased glycosaminoglycan chain sulfation with sodium chlorate enhances BMP2 morpho-genetic bioactivity. The addition of exogenous heparin, a widely used anticoagulant, reduced BMP2 signaling. Our results suggest that cell surface HSPGs mediate BMP2 internalization and modulate BMP2 osteogenic activity.


Nature Genetics | 2009

Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma

Lavanya H. Palavalli; Todd D. Prickett; John R. Wunderlich; Xiaomu Wei; Allison S. Burrell; Patricia Porter-Gill; Sean Davis; Chenwei Wang; Julia C. Cronin; Neena S Agrawal; Jimmy Lin; Wendy Westbroek; Shelley Hoogstraten-Miller; Alfredo A. Molinolo; Patricia Fetsch; Armando C. Filie; Michael P. O'Connell; Carolyn E. Banister; Jason Howard; Phillip Buckhaults; Ashani T. Weeraratna; Lawrence C. Brody; Steven A. Rosenberg; Yardena Samuels

A mutational analysis of the matrix metalloproteinase (MMP) gene family in human melanoma identified somatic mutations in 23% of melanomas. Five mutations in one of the most commonly mutated genes, MMP8, reduced MMP enzyme activity. Expression of wild-type but not mutant MMP8 in human melanoma cells inhibited growth on soft agar in vitro and tumor formation in vivo, suggesting that wild-type MMP-8 has the ability to inhibit melanoma progression.


Cancer Research | 2008

Wnt5A Regulates Expression of Tumor-Associated Antigens in Melanoma via Changes in Signal Transducers and Activators of Transcription 3 Phosphorylation

Samudra K. Dissanayake; Purevdorj B. Olkhanud; Michael P. O'Connell; Arnell Carter; Amanda D. French; Tura C. Camilli; Chineye D. Emeche; Kyle J. Hewitt; Devin T. Rosenthal; Poloko D. Leotlela; Michael Wade; Sherry W. Yang; Larry J. Brant; Brian J. Nickoloff; Jane L. Messina; Arya Biragyn; Keith S. Hoek; Dennis D. Taub; Dan L. Longo; Vernon K. Sondak; Stephen M. Hewitt; Ashani T. Weeraratna

There are currently no effective therapies for metastatic melanoma and targeted immunotherapy results in the remission of only a very small percentage of tumors. In this study, we show that the noncanonical Wnt ligand, Wnt5A, can increase melanoma metastasis in vivo while down-regulating the expression of tumor-associated antigens important in eliciting CTL responses (e.g., MART-1, GP100, and tyrosinase). Melanosomal antigen expression is governed by MITF, PAX3, and SOX10 and is inhibited upon signal transducers and activators of transcription 3 (STAT3) activation, via decreases in PAX3 and subsequently MITF expression. Increasing Wnt5A in Wnt5A-low cells activated STAT3, and STAT3 was decreased upon Wnt5A knockdown. Downstream targets such as PAX3, MITF, and MART-1 were also affected by Wnt5A treatment or knockdown. Staining of a melanoma tissue array also highlighted the inverse relationship between MART-1 and Wnt5A expression. PKC activation by phorbol ester mimicked Wnt5A effects, and Wnt5A treatment in the presence of STAT3 or PKC inhibitors did not lower MART-1 levels. CTL activation studies showed that increases in Wnt5A correspond to decreased CTL activation and vice versa, suggesting that targeting Wnt5A before immunotherapy may lead to the enhancement of current targeted immunotherapy for patients with metastatic melanoma.


Journal of Bone and Joint Surgery, American Volume | 2008

Proximal Tibial Osteochondromas in Patients with Fibrodysplasia Ossificans Progressiva

Gregory K. Deirmengian; Nader M. Hebela; Michael P. O'Connell; David L. Glaser; Eileen M. Shore; Frederick S. Kaplan

BACKGROUND Fibrodysplasia ossificans progressiva is a rare autosomal dominant disorder characterized by congenital malformation of the great toes and by progressive heterotopic ossification of skeletal muscle and soft connective tissues. The disorder is caused by a recurrent missense mutation in the glycine-serine activation domain of activin A receptor type I, a bone morphogenetic protein (BMP) type-I receptor, in all classically affected individuals. Osteochondromas of the proximal part of the tibia are benign osteochondral neoplasms or orthotopic lesions of skeletal remodeling associated with dysregulated BMP signaling and have been considered an atypical feature of fibrodysplasia ossificans progressiva, but they may be underdiagnosed because of their often asymptomatic nature. The purpose of the present study was to determine the prevalence and characteristics of proximal tibial osteochondromas in individuals who have fibrodysplasia ossificans progressiva. METHODS Over a period of thirty months, we evaluated all patients with new and established fibrodysplasia ossificans progressiva for the presence of proximal tibial osteochondromas on the basis of medical history, physical examination, and radiographic studies. We quantified the prevalence of osteochondromas and characterized the types of osteochondromas to identify relevant trends. RESULTS Ninety-six patients (including fifty-two female patients and forty-four male patients) with fibrodysplasia ossificans progressiva were evaluated on the basis of a history and physical examination. Plain radiographs were available for sixty-seven patients. Ninety percent of all patients had osteochondroma of the proximal part of the tibia. These lesions usually were asymptomatic, most commonly were bilateral, and typically were located at the pes anserinus. Seventy-five percent of the lesions were pedunculated, and 25% were sessile. CONCLUSIONS Proximal tibial osteochondromas are a common phenotypic feature of fibrodysplasia ossificans progressiva, a finding that expands the recognized consequences of recurrent activating mutations in activin A receptor type I to include not only congenital skeletal malformations and heterotopic skeletogenesis but also benign osteochondral neoplasms or orthotopic lesions of skeletal modeling. The present study provides insight into the genetic basis of osteochondroma formation in patients with fibrodysplasia ossificans progressiva and possibly into that of more common conditions in which these lesions occur.


Journal of Investigative Dermatology | 2009

Wnt5A activates the calpain-mediated cleavage of filamin A

Michael P. O'Connell; Jennifer L. Fiori; Katherine M. Baugher; Fred E. Indig; Amanda D. French; Tura C. Camilli; Brittany P. Frank; Rachel Earley; Keith S. Hoek; Joanne H. Hasskamp; E. George Elias; Dennis D. Taub; Michel Bernier; Ashani T. Weeraratna

We have previously shown that Wnt5A and ROR2, an orphan tyrosine kinase receptor, interact to mediate melanoma cell motility. In other cell types, this can occur through the interaction of ROR2 with the cytoskeletal protein filamin A. Here, we found that filamin A protein levels correlated with Wnt5A levels in melanoma cells. Small interfering RNA (siRNA) knockdown of WNT5A decreased filamin A expression. Knockdown of filamin A also corresponded to a decrease in melanoma cell motility. In metastatic cells, filamin A expression was predominant in the cytoplasm, which western analysis indicated was due to the cleavage of filamin A in these cells. Treatment of nonmetastatic melanoma cells with recombinant Wnt5A increased filamin A cleavage, and this could be prevented by the knockdown of ROR2 expression. Further, BAPTA-AM chelation of intracellular calcium also inhibited filamin A cleavage, leading to the hypothesis that Wnt5A/ROR2 signaling could cleave filamin A through activation of calcium-activated proteases, such as calpains. Indeed, WNT5A knockdown decreased calpain 1 expression, and by inhibiting calpain 1 either pharmacologically or using siRNA, it decreased cell motility. Our results indicate that Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of the cytoskeleton and an increase in melanoma cell motility.


Journal of Biological Chemistry | 2009

Heparan Sulfate Proteoglycan Modulation of Wnt5A Signal Transduction in Metastatic Melanoma Cells

Michael P. O'Connell; Jennifer L. Fiori; Emily K. Kershner; Brittany P. Frank; Fred E. Indig; Dennis D. Taub; Keith S. Hoek; Ashani T. Weeraratna

Heparan sulfate proteoglycans (HSPGs) are important modulators for optimizing signal transduction of many pathways, including the Wnt pathways. We demonstrate that HSPG glycosaminoglycan levels increased with increasing metastatic potential of melanoma cells. Previous studies have demonstrated that Wnt5A increases the invasiveness of melanoma cells. We further demonstrate that HSPGs potentiate Wnt5A signaling, since enzymatic removal of the HSPG backbone resulted in a decrease in cellular Wnt5A levels, an increase in secreted Wnt5A in cell media, a decrease in downstream signaling, and ultimately, a decrease in invasiveness. Specifically, syndecan 1 and syndecan 4 expression correlated to Wnt5A expression and melanoma malignancy. Knockdown of syndecan 1 or 4 caused decreases in cell invasion, which could be restored by treating the cells with recombinant Wnt5A. These data indicate that syndecan 1 and 4 correlate to increased metastatic potential in melanoma patients and are an important component of the Wnt5A autocrine signaling loop, the activation of which leads to increased metastasis of melanoma.


Blood | 2009

Activation of Wnt5A signaling is required for CXC chemokine ligand 12-mediated T-cell migration

Manik C. Ghosh; Gary Collins; Bolormaa Vandanmagsar; Margaret Brill; Arnell Carter; Ana Lustig; Kevin G. Becker; William W. Wood; Chineye D. Emeche; Amanda D. French; Michael P. O'Connell; Mai Xu; Ashani T. Weeraratna; Dennis D. Taub

Chemokines mediate the signaling and migration of T cells, but little is known about the transcriptional events involved therein. Microarray analysis of CXC chemokine ligand (CXCL) 12-treated T cells revealed that Wnt ligands are significantly up-regulated during CXCL12 treatment. Real-time polymerase chain reaction and Western blot analysis confirmed that the expression of noncanonical Wnt pathway members (eg, Wnt5A) was specifically up-regulated during CXCL12 stimulation, whereas beta-catenin and canonical Wnt family members were selectively down-regulated. Wnt5A augmented signaling through the CXCL12-CXCR4 axis via the activation of protein kinase C. Moreover, Wnt5A expression was required for CXCL12-mediated T-cell migration, and rWnt5A sensitized human T cells to CXCL12-induced migration. Furthermore, Wnt5A expression was also required for the sustained expression of CXCR4. These results were further supported in vivo using EL4 thymoma metastasis as a model of T-cell migration. Together, these data demonstrate that Wnt5A is a critical mediator of CXCL12-CXCR4 signaling and migration in human and murine T cells.


Nature Genetics | 2016

Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number

Jonathan J. Lyons; Xiaomin Yu; Jason D. Hughes; Quang T. Le; Ali Jamil; Yun Bai; Nancy Ho; Ming Zhao; Yihui Liu; Michael P. O'Connell; Neil N. Trivedi; Celeste Nelson; Thomas DiMaggio; Nina Jones; Helen F. Matthews; Katie L. Lewis; Andrew J. Oler; Ryan J. Carlson; Peter D. Arkwright; Celine Hong; Sherene Agama; Todd M. Wilson; Sofie Tucker; Yu Zhang; Joshua McElwee; Maryland Pao; Sarah C Glover; Marc E. Rothenberg; Robert J Hohman; Kelly D. Stone

Elevated basal serum tryptase levels are present in 4–6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase–encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.


Endocrinology | 2009

Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

Jennifer L. Fiori; Tie-Nian Zhu; Michael P. O'Connell; Keith S. Hoek; Fred E. Indig; Brittany P. Frank; Christa Morris; Sutapa Kole; Joanne Hasskamp; George Elias; Ashani T. Weeraratna; Michel Bernier

The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway.

Collaboration


Dive into the Michael P. O'Connell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda D. French

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dennis D. Taub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fred E. Indig

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexandra F. Freeman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Fiori

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jonathan J. Lyons

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Milner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brittany P. Frank

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Poloko D. Leotlela

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge