Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Pieper is active.

Publication


Featured researches published by Michael P. Pieper.


Journal of Pharmacology and Experimental Therapeutics | 2009

Preclinical Evaluation of Long-Acting Muscarinic Antagonists: Comparison of Tiotropium and Investigational Drugs

Paola Casarosa; Thierry Bouyssou; Sabine Germeyer; Andreas Schnapp; Florian Gantner; Michael P. Pieper

Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation caused by persistent inflammatory processes in the airways. An increased cholinergic tone mediates different pathophysiological features of COPD, such as bronchoconstriction and mucus hypersecretion, mostly through activation of the human muscarinic M3 receptor (hM3) subtype. Tiotropium bromide (Spiriva) is a well established muscarinic antagonist in the pharmacological management of COPD with a once-daily posology. The rationale behind the sustained bronchodilation obtained with tiotropium consists in its slow dissociation from hM3 receptors. In this study, we performed a comprehensive preclinical comparison of tiotropium with other long-acting muscarinic antagonists (LAMAs) currently in clinical development, namely aclidinium bromide and glycopyrrolate. The different muscarinic antagonists were characterized for their 1) affinity toward the different human muscarinic receptor subtypes expressed in Chinese hamster ovary cells and kinetics of receptor dissociation, 2) potency in inhibiting the agonist-induced activation of muscarinic receptors through measurement of second messengers, and 3) efficacy and duration of bronchoprotection, as tested in a model of acetylcholine-induced bronchoconstriction in anesthetized dogs over a period of 24 h. All of the tested LAMAs showed high affinity and potency toward the hM3 receptor (tiotropium, pA2 = 10.4; aclidinium, pA2 = 9.6; and glycopyrrolate, pA2 = 9.7). However, dissociation half-lives of the LAMAs from the hM3 receptor differed significantly (tiotropium, t½ = 27 h; aclidinium, t½ = 10.7 h; and glycopyrrolate, t½ = 6.1 h). In line with their kinetic properties at the hM3, the tested LAMAs provided different levels of bronchoprotection in the in vivo setting 24 h after administration (tiotropium = 35%, aclidinium = 21%, and glycopyrrolate = 0% at 24 h) when applied at equieffective doses.


European Journal of Pharmacology | 2008

Acetylcholine mediates the release of IL-8 in human bronchial epithelial cells by a NFkB/ERK-dependent mechanism.

Mirella Profita; Anna Bonanno; Liboria Siena; Maria Ferraro; Angela Marina Montalbano; Flora Pompeo; Loredana Riccobono; Michael P. Pieper; Mark Gjomarkaj

Acetylcholine may play a role in cell activation and airway inflammation. We evaluated the levels of both mRNA and protein of muscarinic M(1), M(2), M(3) receptors in human bronchial epithelial cell line (16HBE). 16HBE cells were also stimulated with acetylcholine and extracellular signal-regulated kinase1/2 (ERK1/2) and NFkB pathway activation as well as the IL-8 release was assessed in the presence or absence of the inhibitor of Protein-kinase (PKC) (GF109203X), of the inhibitor of mitogenic activated protein-kinase kinase (MAPKK) (PDO9805), of the inhibitor of kinaseB-alpha phosphorilation (pIkBalpha) (BAY11-7082), and of muscarinic receptor antagonists tiotropium bromide, 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), telenzepine, gallamine. Additionally, we tested the IL-8-mediated neutrophil chemotactic activity of 16HBE supernatants stimulated with acetylcholine in the presence or absence of tiotropium. 16HBE cells expressed both protein and mRNA for muscarinic M(3), M(2) and M(1) receptors with levels of muscarinic M(3) receptor>muscarinic M(1) receptor>muscarinic M(2) receptor. Acetylcholine (10 microM) significantly stimulated ERK1/2 and NFkB activation as well as IL-8 release in 16HBE cells when compared to basal values. Furthermore, while the use of tiotropium, 4-DAMP, GF109203X, PDO98059, BAY11-7082 completely abolished these events, the use of telenzepine and gallamine were only partially able to downregulate these effects. Additionally, acetylcholine-mediated IL-8 release from 16HBE cells significantly increased chemotaxis toward neutrophils and this effect was blocked by tiotropium. In conclusion, acetylcholine activates the release of IL-8 from 16HBE involving PKC, ERK1/2 and NFkB pathways via muscarinic receptors, suggesting that it is likely to contribute to IL-8 related neutrophilic inflammatory disorders in the airway. Thus, muscarinic antagonists may contribute to control inflammatory processes in airway diseases.


Pulmonary Pharmacology & Therapeutics | 2010

Tiotropium bromide exerts anti-inflammatory activity in a cigarette smoke mouse model of COPD.

L. Wollin; Michael P. Pieper

Tiotropium bromide is a long acting muscarinic antagonist (LAMA), marketed under the brand name Spiriva, for the treatment of chronic obstructive pulmonary disease (COPD). Besides its proven direct bronchodilatory activity, recent clinical studies demonstrated that tiotropium is able to reduce the exacerbation rate and impact the clinical course of COPD. One significant pathological feature believed to be causative for the progressive nature of COPD is chronic pulmonary inflammation. The aim of the present study was to investigate the anti-inflammatory activity of tiotropium on cigarette smoke-induced pulmonary inflammation in mice. C57Bl/6 mice were exposed to cigarette smoke (CS) for four days with increasing exposure time for up to 6h per day to elicit pulmonary inflammation and mediator release. One hour before smoke exposure, animals were treated with tiotropium by inhalation (0.01-0.3mg/mL) for 5 min; 18h after the last CS exposure a bronchoalveolar lavage was performed. Tiotropium concentration-dependently inhibited pulmonary neutrophilic inflammation with an IC(50) of 0.058 mg/mL and a maximum inhibition of 60% at 0.3mg/mL. Furthermore, the CS-induced pulmonary release of leukotriene B(4), interleukin-6, keratinocyte-derived chemokine, monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha and -2, and tumor necrosis factor alpha was dose-dependently reduced. The bronchodilatory activity of tiotropium against acetycholine-induced bronchoconstriction was found to be in the same dose range as the anti-inflammatory activity with an IC(50) of 0.045 mg/mL and a maximum bronchodilation of 90% at 0.3mg/mL. Our data suggest that the beneficial effects of tiotropium on the course of COPD shown in patients may be associated with an anti-inflammatory activity.


Journal of Pharmacology and Experimental Therapeutics | 2011

Functional and biochemical rationales for the 24-hour long duration of action of olodaterol

Paola Casarosa; Ines Kollak; Tobias Kiechle; Angela Ostermann; Andreas Schnapp; Ralf Kiesling; Michael P. Pieper; Peter Sieger; Florian Gantner

β2-Adrenoceptor (β2-AR) agonists are powerful bronchodilators and play a pivotal role in the management of pulmonary obstructive diseases, such as asthma and chronic obstructive pulmonary disease. Although these agents first were used many years ago, progress in drug development has resulted in better tolerated, long-acting β2-AR agonists (LABAs), such as formoterol and salmeterol. Although LABAs have been on the market for several years, relatively little is known on the rationale(s) behind their long duration of action. In this study, we focused on olodaterol (previously known as BI1744CL), a novel inhaled LABA, which provides a bronchodilating effect lasting 24 h and is currently in Phase III clinical trials. To understand the rationale behind its long duration of action, different aspects of olodaterol were analyzed (i.e., its lipophilicity and propensity to accumulate in the lipid bilayer as well as its tight binding to the β2-AR). In line with its physicochemical properties, olodaterol associated moderately with lipid bilayers. Instead, kinetic as well as equilibrium binding studies indicated the presence of a stable [3H]olodaterol/β2-AR complex with a dissociation half-life of 17.8 h due to ternary complex formation. The tight binding of olodaterol to the human β2-AR and stabilization of the ternary complex were confirmed in functional experiments monitoring adenylyl cyclase activity after extensive washout. Taken together, binding, kinetic, and functional data support the existence of a stable complex with the β2-AR that, with a dissociation half-life >17 h, might indeed be a rationale for the 24-h duration of action of olodaterol.


Journal of Pharmacology and Experimental Therapeutics | 2009

Smoke, Choline Acetyltransferase, Muscarinic Receptors, and Fibroblast Proliferation in Chronic Obstructive Pulmonary Disease

Mirella Profita; Anna Bonanno; Liboria Siena; Andreina Bruno; Maria Ferraro; Angela Marina Montalbano; Giusy Daniela Albano; Loredana Riccobono; Paola Casarosa; Michael P. Pieper; Mark Gjomarkaj

Acetylcholine (ACh), synthesized by choline acetyltransferase (ChAT), and muscarinic M1, M2, and M3 receptors (MRs) are involved in fibroblast proliferation. We evaluated ChAT, MRs, and extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor (NF) κB activation in lung fibroblasts from patients with chronic obstructive pulmonary disease (COPD), control smokers, and controls. Human fetal lung fibroblasts (HFL-1) stimulated with interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and cigarette smoke extracts (CSEs) were evaluated for ChAT and MR expression. We tested the effects of ACh on fibroblast proliferation and its ability to bind fibroblasts from patients with COPD, control smokers, controls, and HFL-1 stimulated with IL-1β, TNF-α, and CSE. ChAT, M1, and M3 expression and ERK1/2 and NFκB activation were increased, whereas M2 was reduced, in COPD and smoker subjects compared with controls. IL-1β increased the ChAT and M3, TNF-α down-regulated M2, and CSE increased ChAT and M3 expression while down-regulating the expression of M2 in HFL-1 cells. ACh stimulation increased fibroblast proliferation in patients with COPD, control smokers, and controls, with higher effect in control smokers and patients with COPD and increased HFL-1 proliferation only in CSE-treated cells. The binding of ACh was higher in patients with COPD and in control smokers than in controls and in CSE-treated than in IL-1β- and TNF-α-stimulated HFL-1 cells. Tiotropium (Spiriva; [1α,2β,4β,5α,7β-7-hydroxydi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatrcyclo[3.3.1.024], C19H22 NO4S2Br·H2O), gallamine triethiodide (C19H22N4O2S·2HCl·H2O), telenzepine [4,9-d-dihydro-3-methyl-4-[(4-methyl-1piperazinyl) acetyl]-10H-thieno [3,4-b][1,5]benzodiazepine-10-one dihydrobromide, C30H60I3N3O3], 4-diphenylacetoxy-N-methylpiperidine, PD098059 [2-(2-amino-3methoxyphenyl)-4H-1benzopyran-4-one, C16H13NO3], and BAY 11-7082 [(E)-3-(4-methylphenylsulfonyl)-2-propenetrile, C10H9NO2C], down-regulated the ACh-induced fibroblast proliferation, promoting the MRs and ERK1/2 and NFκB pathways involvement in this phenomenon. These results suggest that cigarette smoke might alter the expression of ChAT and MRs, promoting airway remodeling in COPD and that anticholinergic drugs, including tiotropium, might prevent these events.


Life Sciences | 2011

Cigarette smoke extract activates human bronchial epithelial cells affecting non-neuronal cholinergic system signalling in vitro.

Mirella Profita; Anna Bonanno; Angela Marina Montalbano; Maria Ferraro; Liboria Siena; Andreina Bruno; Stefania Girbino; Giusy Daniela Albano; Paola Casarosa; Michael P. Pieper; Mark Gjomarkaj

AIMS Acetylcholine (ACh) is synthesized by Choline Acetyl-Transferase (ChAT) that exerts its physiological effects in airway epithelial cells via muscarinic receptor (MR) activation. We evaluate the effect of ACh stimulation on human bronchial epithelial cells (16-HBE) and test whether cigarette smoke extract (CSE) can modify the basal cellular response to ACh affecting the non-neuronal cholinergic system signalling. MAIN METHODS ACh stimulated 16-HBE were tested for ACh-binding, Leukotriene B(4) (LTB(4)) release and ERK1/2 and NFkB pathway activation. Additionally, we investigated all the aforementioned parameters as well as ChAT and MR proteins and mRNA expression and endogenous ACh production in CSE-treated 16-HBE. KEY FINDINGS We showed that ACh induced in 16-HBE, in a concentration-dependent manner, LTB(4) release via the activation of ERK1/2 and NFkB pathways. The addition of Tiotropium (Spiriva®), Gallamine, Telenzepine and 4-DAMP (muscarinic receptor antagonists), as well as of PD 098059 (MAPKK inhibitor) and BAY117082 (inhibitor of IkBα phosphorilation), down-regulated the ACh-induced effects. Additionally, CSE treatment of 16-HBE increased the binding of ACh, and shifted the LTB4 release from the concentration ACh 1μM to 10nM. Finally, we observed that the treatment of 16-HBE with CSE increased the expression of ChAT, M(2) and M(3) and of endogenous ACh production in 16-HBE. Tiotropium regulated the LTB4 release and ACh production in CSE treated 16-HBE. SIGNIFICANCE CSE increases the pro-inflammatory activity of human bronchial epithelial cells, and promotes the cellular response to lower concentrations of ACh, by affecting the expression of ChAT and MRs. Tiotropium might prevent pro-inflammatory events generated by ACh together with CSE.


Biochimica et Biophysica Acta | 2012

β₂ long-acting and anticholinergic drugs control TGF-β1-mediated neutrophilic inflammation in COPD.

Mirella Profita; Anna Bonanno; Angela Marina Montalbano; Giusy Daniela Albano; Loredana Riccobono; Liboria Siena; Maria Ferraro; Paola Casarosa; Michael P. Pieper; Mark Gjomarkaj

We quantified TGF-β1 and acetylcholine (ACh) concentrations in induced sputum supernatants (ISSs) from 18 healthy controls (HC), 22 healthy smokers (HS) and 21 COPDs. ISSs from HC, HS and COPD as well as rhTGF-β1 were also tested in neutrophil adhesion and in mAChR2, mAChR3 and ChAT expression experiments in human bronchial epithelial cells (16-HBE). Finally, we evaluated the effects of Olodaterol (a novel inhaled β(2)-adrenoceptor agonist) and Tiotropium Spiriva®, alone or in combination, on neutrophil adhesion and mAChRs and ChAT expression in stimulated 16-HBE. The results showed that 1) TGF-β1 and ACh concentrations are increased in ISSs from COPD in comparison to HC and HS, and TGF-β1 in HS is higher than in HC; 2) ISSs from COPD and HS caused increased neutrophil adhesion to 16-HBE when compared to ISSs from HC. The effect of ISSs from COPD was significantly reduced by TGF-β1 depletion or by the pretreatment with Olodaterol or Tiotropium alone or in combination, while the effect of ISSs from HS was significantly reduced by the pretreatment with Olodaterol alone; 3) mAChR2, mAChR3 and ChAT expression was increased in 16-HBE stimulated with ISSs from COPD and TGF-β1 depletion significantly reduced this effect on mAChR3 and ChAT expression; 4) rhTGF-β1 increased mAChR2, mAChR3 and ChAT expression in 16-HBE; 5) Olodaterol did not affect the expression of mAChRs and ChAT in 16-HBE. Our findings support the use of β₂ long-acting and anticholinergic drugs to control the bronchoconstriction and TGF-β1-mediated neutrophilic inflammation in COPD.


Journal of Pharmacology and Experimental Therapeutics | 2010

The constitutive activity of the human muscarinic M3 receptor unmasks differences in the pharmacology of anticholinergics.

Paola Casarosa; Tobias Kiechle; Peter Sieger; Michael P. Pieper; Florian Gantner

An activator protein 1-driven luciferase reporter assay was developed to monitor the activation of the human muscarinic M3 receptor (hM3-R) and evaluate functional potencies of different anticholinergics in Chinese hamster ovary cells. This assay proved to be superior to previously used functional assays [i.e., inositol phosphate accumulation (J Pharmacol Exp Ther 330:660–668, 2009)], thanks to the longer incubation times that allow reaching of pseudoequilibrium for ligands with slower dissociation kinetics, the long-acting muscarinic antagonists. Interestingly, within this system the hM3-R efficiently signaled in an agonist-independent manner. All the antagonists tested were able to inhibit the hM3-R constitutive activity in a concentration-dependent fashion, behaving as full inverse agonists. Curiously, significant differences in potency as antagonists (against carbachol) and inverse agonists were seen for some compounds (N-methyl scopolamine and tiotropium). Given the potential for inverse agonists to cause receptor up-regulation, the effect of chronic exposure to anticholinergics on the expression levels of hM3-R was also tested. Again, significant differences were seen, with some ligands (e.g., tiotropium) producing less than half of the receptor up-regulation caused by other anticholinergics. This study shows that anticholinergics can exhibit differential behaviors, which depend on the pathway investigated, and therefore provides evidence that the molecular mechanism of inverse agonism is likely to be more complex than the stabilization of a single inactive receptor conformation. In addition, differences in the potential of anticholinergics to induce hM3-R up-regulation might have clinical relevance, because many are on the market or in clinical trials as chronic treatment for chronic obstructive pulmonary disease, for example.


Life Sciences | 2012

The non-neuronal cholinergic system as novel drug target in the airways.

Michael P. Pieper

The parasympathetic nervous system is a key regulator of the human organism involved in the pathophysiology of various disorders through cholinergic mechanisms. In the lungs, acetylcholine (ACh) released by vagal nerve endings stimulates muscarinic receptors thereby increasing airway smooth muscle tone. Contraction of airway smooth muscle cells leads to increased respiratory resistance and dyspnea. An additional branch of the cholinergic system is the non-neuronal cholinergic system expressed in nearly all cell types present in the airways. Activation of this system may contribute to an increased cholinergic tone in the lungs, inducing pathophysiological processes like inflammation, remodeling, mucus hypersecretion and chronic cough. Selective muscarinic receptor antagonists specifically inhibit acetylcholine at the receptor inducing bronchodilation in patients with obstructive airway diseases. This paper reviews preclinical pharmacological research activities on anticholinergics including experimental models of asthma and chronic obstructive pulmonary disease, COPD. It discloses various options to follow up the non-neuronal cholinergic system as a novel drug target for the treatment of key aspects of obstructive airway diseases, in particular those of a chronic nature.


Current Opinion in Pharmacology | 2014

The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease

Philippa Dale; Hana Cernecka; Martina Schmidt; Mark R. Dowling; Steven J. Charlton; Michael P. Pieper; Martin Michel

Highlights • Muscarinic receptors increase smooth muscle tone in airways and urinary bladder.• β-Adrenoceptors relax smooth muscle tone and oppose muscarinic contraction.• Opposition involves transmitter release, signal transduction and receptor expression.• This supports the combined use of muscarinic antagonists and β-adrenoceptor agonists.

Collaboration


Dive into the Michael P. Pieper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Bonanno

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mirella Profita

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge