Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Thorgersen is active.

Publication


Featured researches published by Michael P. Thorgersen.


Nature | 2010

Microbial metalloproteomes are largely uncharacterized

Aleksandar Cvetkovic; Angeli Lal Menon; Michael P. Thorgersen; Joseph W. Scott; Farris L. Poole; Francis E. Jenney; W. Andrew Lancaster; Jeremy L. Praissman; Saratchandra Shanmukh; Brian J. Vaccaro; Sunia A. Trauger; Ewa Kalisiak; Junefredo V. Apon; Gary Siuzdak; Steven M. Yannone; John A. Tainer; Michael W. W. Adams

Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide

Matthew W. Keller; Gerrit J. Schut; Gina L. Lipscomb; Angeli Lal Menon; Ifeyinwa J. Iwuchukwu; Therese T. Leuko; Michael P. Thorgersen; William J. Nixon; Aaron S. Hawkins; Robert M. Kelly; Michael W. W. Adams

Microorganisms can be engineered to produce useful products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on carbohydrates at 100°C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophically at 73°C. The engineered P. furiosus strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant P. furiosus strain. Moreover, it is carried out some 30°C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus

Michael P. Thorgersen; Karen Stirrett; Robert A. Scott; Michael W. W. Adams

The anaerobic archaeon Pyrococcus furiosus grows by fermenting carbohydrates producing H2, CO2, and acetate. We show here that it is surprisingly tolerant to oxygen, growing well in the presence of 8% (vol/vol) O2. Although cell growth and acetate production were not significantly affected by O2, H2 production was reduced by 50% (using 8% O2). The amount of H2 produced decreased in a linear manner with increasing concentrations of O2 over the range 2–12% (vol/vol), and for each mole of O2 consumed, the amount of H2 produced decreased by approximately 2 mol. The recycling of H2 by the two cytoplasmic hydrogenases appeared not to play a role in O2 resistance because a mutant strain lacking both enzymes was not more sensitive to O2 than the parent strain. Decreased H2 production was also not due to inactivation of the H2-producing, ferredoxin-dependent membrane-bound hydrogenase because its activity was unaffected by O2 exposure. Electrons from carbohydrate oxidation must therefore be diverted to relieve O2 stress at the level of reduced ferredoxin before H2 production. Deletion strains lacking superoxide reductase (SOR) and putative flavodiiron protein A showed increased sensitivity to O2, indicating that these enzymes play primary roles in resisting O2. However, a mutant strain lacking the proposed electron donor to SOR, rubredoxin, was unaffected in response to O2. Hence, electrons from sugar oxidation normally used to produce H2 are diverted to O2 detoxification by SOR and putative flavodiiron protein A, but the electron flow pathway from ferredoxin does not necessarily involve rubredoxin.|


Journal of Biological Chemistry | 2014

Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex.

Gina L. Lipscomb; Gerrit J. Schut; Michael P. Thorgersen; William J. Nixon; Robert M. Kelly; Michael W. W. Adams

Background: Biohydrogen production from formate may aid in efficient chemical and fuel production using H2 as the energy carrier. Results: The hyperthermophile Pyrococcus furiosus was engineered to convert formate to H2. Conclusion: An 18-gene cluster can be inserted into the P. furiosus chromosome for active production of a membrane-bound system. Significance: This work demonstrates the versatility of this model organism for metabolic engineering purposes. Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications.


BMC Bioinformatics | 2011

A Computational Framework for Proteome-Wide Pursuit and Prediction of Metalloproteins using ICP-MS and MS/MS Data

W. Andrew Lancaster; Jeremy L. Praissman; Farris L. Poole; Aleksandar Cvetkovic; Angeli Lal Menon; Joseph W. Scott; Francis E. Jenney; Michael P. Thorgersen; Ewa Kalisiak; Junefredo V. Apon; Sunia A. Trauger; Gary Siuzdak; John A. Tainer; Michael W. W. Adams

BackgroundMetal-containing proteins comprise a diverse and sizable category within the proteomes of organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid sequence is not currently possible. We recently developed a generally-applicable experimental technique for finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these limitations and complement the metal-directed protein purification, we developed a computational infrastructure and statistical methodology to aid in the pursuit and identification of novel metalloproteins.ResultsWe demonstrate that our methodology enables predictions of metal-protein interactions using an experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10 metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum, nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5 undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based purification or recombinant approaches to validate these predictions.ConclusionsWe conclude that the largely uncharacterized extent of native metalloproteomes can be revealed through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for bioremediation, medicine and other fields.


Metabolic Engineering | 2014

Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus

Michael P. Thorgersen; Gina L. Lipscomb; Gerrit J. Schut; Robert M. Kelly; Michael W. W. Adams

The heterotrophic, hyperthermophilic archaeon Pyrococcus furiosus is a new addition to the growing list of genetically-tractable microorganisms suitable for metabolic engineering to produce liquid fuels and industrial chemicals. P. furiosus was recently engineered to generate 3-hydroxypropionate (3-HP) from CO₂ and acetyl-CoA by the heterologous-expression of three enzymes from the CO₂ fixation cycle of the thermoacidophilic archaeon Metallosphaera sedula using a thermally-triggered induction system. The acetyl-CoA for this pathway is generated from glucose catabolism that in wild-type P. furiosus is converted to acetate with concurrent ATP production by the heterotetrameric (α₂β₂) acetyl-CoA synthetase (ACS). Hence ACS in the engineered 3-HP production strain (MW56) competes with the heterologous pathway for acetyl-CoA. Herein we show that strains of MW56 lacking the α-subunit of either of the two ACSs previously characterized from P. furiosus (ACSI and ACSII) exhibit a three-fold increase in specific 3-HP production. The ΔACSIα strain displayed only a minor defect in growth on either maltose or peptides, while no growth defect on these substrates was observed with the ΔACSIIα strain. Deletion of individual and multiple ACS subunits was also shown to decrease CoA release activity for several different CoA ester substrates in addition to acetyl-CoA, information that will be extremely useful for future metabolic engineering endeavors in P. furiosus.


Genome Announcements | 2014

Complete Genome Sequence of Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA Sequencing Technology

Steven D. Brown; Sagar M. Utturkar; Timothy S. Magnuson; Allison E. Ray; Farris L. Poole; W. Andrew Lancaster; Michael P. Thorgersen; Michael W. W. Adams; Dwayne A. Elias

ABSTRACT Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.


Applied and Environmental Microbiology | 2016

Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses.

Brian J. Vaccaro; Michael P. Thorgersen; W. Andrew Lancaster; Morgan N. Price; Farris L. Poole; Adam M. Deutschbauer; Adam P. Arkin; Michael W. W. Adams

ABSTRACT Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library from Pseudomonas stutzeri strain RCH2 was grown under denitrifying conditions, using nitrate or nitrite as an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. The dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.


Applied and Environmental Microbiology | 2015

Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments

Michael P. Thorgersen; W. Andrew Lancaster; Brian J. Vaccaro; Farris L. Poole; Andrea M. Rocha; Tonia L. Mehlhorn; Angelica Pettenato; Jayashree Ray; R. Jordan Waters; Ryan A. Melnyk; Romy Chakraborty; Terry C. Hazen; Adam M. Deutschbauer; Adam P. Arkin; Michael W. W. Adams

ABSTRACT The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and <0.2 nM to 580 μM, respectively. Almost all metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notable exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.


Metallomics | 2014

Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization

W. Andrew Lancaster; Angeli Lal Menon; Israel M. Scott; Farris L. Poole; Brian J. Vaccaro; Michael P. Thorgersen; Jil T. Geller; Terry C. Hazen; Richard A. Hurt; Steven D. Brown; Dwayne A. Elias; Michael W. W. Adams

Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strain Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.

Collaboration


Dive into the Michael P. Thorgersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam P. Arkin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary Siuzdak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Deutschbauer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dwayne A. Elias

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge