Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Weisend is active.

Publication


Featured researches published by Michael P. Weisend.


Pediatrics | 1999

Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders

Jeffrey D. Lewine; Richard Andrews; Michael Chez; Arun Angelo Patil; Orrin Devinsky; Michael C. Smith; Andres M. Kanner; John T. Davis; Michael Funke; Greg Jones; Brian Chong; Sherri Provencal; Michael P. Weisend; Roland R. Lee; William W. Orrison

Background. One-third of children diagnosed with autism spectrum disorders (ASDs) are reported to have had normal early development followed by an autistic regression between the ages of 2 and 3 years. This clinical profile partly parallels that seen in Landau-Kleffner syndrome (LKS), an acquired language disorder (aphasia) believed to be caused by epileptiform activity. Given the additional observation that one-third of autistic children experience one or more seizures by adolescence, epileptiform activity may play a causal role in some cases of autism. Objective. To compare and contrast patterns of epileptiform activity in children with autistic regressions versus classic LKS to determine if there is neurobiological overlap between these conditions. It was hypothesized that many children with regressive ASDs would show epileptiform activity in a multifocal pattern that includes the same brain regions implicated in LKS. Design. Magnetoencephalography (MEG), a noninvasive method for identifying zones of abnormal brain electrophysiology, was used to evaluate patterns of epileptiform activity during stage III sleep in 6 children with classic LKS and 50 children with regressive ASDs with onset between 20 and 36 months of age (16 with autism and 34 with pervasive developmental disorder–not otherwise specified). Whereas 5 of the 6 children with LKS had been previously diagnosed with complex-partial seizures, a clinical seizure disorder had been diagnosed for only 15 of the 50 ASD children. However, all the children in this study had been reported to occasionally demonstrate unusual behaviors (eg, rapid blinking, holding of the hands to the ears, unprovoked crying episodes, and/or brief staring spells) which, if exhibited by a normal child, might be interpreted as indicative of a subclinical epileptiform condition. MEG data were compared with simultaneously recorded electroencephalography (EEG) data, and with data from previous 1-hour and/or 24-hour clinical EEG, when available. Multiple-dipole, spatiotemporal modeling was used to identify sites of origin and propagation for epileptiform transients. Results. The MEG of all children with LKS showed primary or secondary epileptiform involvement of the left intra/perisylvian region, with all but 1 child showing additional involvement of the right sylvian region. In all cases of LKS, independent epileptiform activity beyond the sylvian region was absent, although propagation of activity to frontal or parietal regions was seen occasionally. MEG identified epileptiform activity in 41 of the 50 (82%) children with ASDs. In contrast, simultaneous EEG revealed epileptiform activity in only 68%. When epileptiform activity was present in the ASDs, the same intra/perisylvian regions seen to be epileptiform in LKS were active in 85% of the cases. Whereas primary activity outside of the sylvian regions was not seen for any of the children with LKS, 75% of the ASD children with epileptiform activity demonstrated additional nonsylvian zones of independent epileptiform activity. Despite the multifocal nature of the epileptiform activity in the ASDs, neurosurgical intervention aimed at control has lead to a reduction of autistic features and improvement in language skills in 12 of 18 cases. Conclusions. This study demonstrates that there is a subset of children with ASDs who demonstrate clinically relevant epileptiform activity during slow-wave sleep, and that this activity may be present even in the absence of a clinical seizure disorder. MEG showed significantly greater sensitivity to this epileptiform activity than simultaneous EEG, 1-hour clinical EEG, and 24-hour clinical EEG. The multifocal epileptiform pattern identified by MEG in the ASDs typically includes the same perisylvian brain regions identified as abnormal in LKS. When epileptiform activity is present in the ASDs, therapeutic strategies (antiepileptic drugs, steroids, and even neurosurgery) aimed at its control can lead to a significant improvement in language and autistic features. autism, pervasive developmental disorder–not otherwise specified, epilepsy, magnetoencephalography, Landau-Kleffner syndrome.


Hippocampus | 2001

Retrograde amnesia after hippocampal damage: Recent vs. remote memories in two tasks

Robert J. Sutherland; Michael P. Weisend; Dave G. Mumby; Robert S. Astur; Faith M. Hanlon; Amy Koerner; Michael J. Thomas; Ying Wu; Sandra N. Moses; Carrie Cole; Derek A. Hamilton; Janice M. Hoesing

We review evidence from experiments conducted in our laboratory on retrograde amnesia in rats with damage to the hippocampal formation. In a new experiment reported here, we show that N‐methyl‐D‐aspartate (NMDA)‐induced hippocampal damage produced retrograde amnesia for both hidden platform and two‐choice visible platform discriminations in the Morris water task. For both problems there was a significant trend for longer training‐surgery intervals to be associated with worse retention performance. Little support is offered by our work for the concept that there is a process involving hippocampal‐dependent consolidation of memories in extrahippocampal permanent storage sites. Long‐term memory consolidation may take place within the hippocampus. The hippocampus may be involved permanently in storage and/or retrieval of a variety of relational and nonrelational memories if it was intact at the time of learning, even involving information which is definitely not affected in anterograde amnesia after hippocampal damage. Hippocampus 2001;11:27–42.


Behavioural Brain Research | 1999

Retrograde amnesia and selective damage to the hippocampal formation: memory for places and object discriminations

Dave G. Mumby; Robert S. Astur; Michael P. Weisend; Robert J. Sutherland

Using a within-subjects design, rats were trained on two place-memory problems and five object-discrimination problems at different intervals prior to receiving either ibotenate lesions of the hippocampal formation or sham surgery. Places # 1 and 2 were fixed-platform water-maze tasks that were run in different rooms and they were learned during the 14th and 2nd week before surgery, respectively. Object-discrimination problems # 1-5 were learned during the 13th, 10th, 7th, 4th, and 1st week before surgery, respectively. Rats with hippocampal lesions displayed impaired retention of both Place problems with no evidence of a temporal gradient to the impairment. In contrast to their retrograde place-memory deficits, the hippocampal rats displayed normal retention of the five object-discriminations that were learned before surgery. Hippocampal lesions had similar consequences for anterograde learning, as the lesioned rats were impaired in acquisition of a new water-maze problem that was run in a third room (Place #3), whereas they showed normal acquisition of two new object-discriminations. The findings indicate that the hippocampal formation is not required for long-term consolidation of information underlying accurate performance of object-discriminations, and that its critical role in memory for places persists for at least 14 weeks, and probably for as long as those memories exist.


NeuroImage | 2012

TDCS guided using fMRI significantly accelerates learning to identify concealed objects.

Vincent P. Clark; Brian A. Coffman; Andy R. Mayer; Michael P. Weisend; Terran Lane; Vince D. Calhoun; Elaine M. Raybourn; Christopher M. Garcia; Eric M. Wassermann

The accurate identification of obscured and concealed objects in complex environments was an important skill required for survival during human evolution, and is required today for many forms of expertise. Here we used transcranial direct current stimulation (tDCS) guided using neuroimaging to increase learning rate in a novel, minimally guided discovery-learning paradigm. Ninety-six subjects identified threat-related objects concealed in naturalistic virtual surroundings used in real-world training. A variety of brain networks were found using functional magnetic resonance imaging (fMRI) data collected at different stages of learning, with two of these networks focused in right inferior frontal and right parietal cortex. Anodal 2.0 mA tDCS performed for 30 min over these regions in a series of single-blind, randomized studies resulted in significant improvements in learning and performance compared with 0.1 mA tDCS. This difference in performance increased to a factor of two after a one-hour delay. A dose-response effect of current strength on learning was also found. Taken together, these brain imaging and stimulation studies suggest that right frontal and parietal cortex are involved in learning to identify concealed objects in naturalistic surroundings. Furthermore, they suggest that the application of anodal tDCS over these regions can greatly increase learning, resulting in one of the largest effects on learning yet reported. The methods developed here may be useful to decrease the time required to attain expertise in a variety of settings.


Brain Topography | 2003

Commonalities and Differences Among Vectorized Beamformers in Electromagnetic Source Imaging

Mingxiong Huang; Jerry J. Shih; Roland R. Lee; Deborah L. Harrington; Robert J. Thoma; Michael P. Weisend; Faith M. Hanlon; Kim M. Paulson; T. Li; Kimberly Martin; Gregory A. Miller; José M. Cañive

A number of beamformers have been introduced to localize neuronal activity using magnetoencephalography (MEG) and electroencephalography (EEG). However, currently available information about the major aspects of existing beamformers is incomplete. In the present study, detailed analyses are performed to study the commonalities and differences among vectorized versions of existing beamformers in both theory and practice. In addition, a novel beamformer based on higher-order covariance analysis is introduced. Theoretical formulas are provided on all major aspects of each beamformer; to examine their performance, computer simulations with different levels of correlation and signal-to-noise ratio are studied. Then, an empirical data set of human MEG median-nerve responses with a large number of neuronal generators is analyzed using the different beamformers. The results show substantial differences among existing MEG/EEG beamformers in their ways of describing the spatial map of neuronal activity. Differences in performance are observed among existing beamformers in terms of their spatial resolution, false-positive background activity, and robustness to highly correlated signals. Superior performance is obtained using our novel beamformer with higher-order covariance analysis in simulated data. Excellent agreement is also found between the results of our beamformer and the known neurophysiology of the median-nerve MEG response.


Behavioral Neuroscience | 1999

The hippocampus is not necessary for a place response but may be necessary for pliancy.

Lainy Baird Day; Michael P. Weisend; Robert J. Sutherland; Timothy Schallert

Rats with kainate-colchicine hippocampal lesions (HL) and controls (C) were initially trained in the Morris water maze with procedures that deterred their prepotent thigmotaxic response. Training began with an escape platform that occupied nearly the entire pool. The area to which the rats could escape was made smaller by substituting smaller platforms as training progressed. In contrast to standard procedures, HL rats and C rats showed comparable performance during acquisition and preferentially searched the goal quadrant on probe trials during which the platform was removed. In a follow-up experiment, the platform was moved to a random position along the wall, which required a switch to a thigmotaxic response for most effective escape. HL rats that were thigmotaxic before place training did not switch to a thigmotaxic response as readily as did controls, behavior consistent with the view that hippocampal damage reduces pliancy.


Journal of Experimental Psychology: Animal Behavior Processes | 2007

How do room and apparatus cues control navigation in the Morris water task? Evidence for distinct contributions to a movement vector.

Derek A. Hamilton; Katherine G. Akers; Michael P. Weisend; Robert J. Sutherland

The present study compared the relative influence of location and direction on navigation in the Morris water task. Rats were trained with a fixed hidden or cued platform, and probe trials were conducted with the pool repositioned such that the absolute spatial location of the platform was centered in the opposite quadrant of the pool. Rather than swimming to the platform location, rats swam in the direction that was reinforced during training, resulting in navigation to the relative location of the platform in the pool and search at the appropriate distance from the pool wall. Pool relocation tests revealed disruptions in cued navigation if the cued platform remained at the absolute location, whereas no disruption was observed if the platform remained at the relative location (same direction). The results indicate that direction holds greater influence than does location and further demonstrate that this observation is not altered by the amount of training or time on the platform. The authors propose that navigation in the water task involves a movement vector in which the distal cues and apparatus provide direction and distance information, respectively.


Schizophrenia Research | 2005

M50 sensory gating predicts negative symptoms in schizophrenia.

Robert J. Thoma; Faith M. Hanlon; Sandra N. Moses; Daniel Ricker; Mingxiong Huang; Christopher Edgar; Jessica Irwin; Fernando Torres; Michael P. Weisend; Lawrence E. Adler; Gregory A. Miller; José M. Cañive

Impaired auditory sensory gating is considered characteristic of schizophrenia and a marker of the information processing deficit inherent to that disorder. Predominance of negative symptoms also reflects the degree of deficit in schizophrenia and is associated with poorer pre-morbid functioning, lower IQ, and poorer outcomes. However, a consistent relationship between auditory sensory gating and negative symptoms in schizophrenia has yet to be demonstrated. The absence of such a finding is surprising, since both impaired auditory gating and negative symptoms have been linked with impaired fronto-temporal cortical function. The present study measured auditory gating using the P50 event related potential (ERP) in a paired-click paradigm and capitalized on the relative localization advantage of magnetoencephalography (MEG) to assess auditory sensory gating in terms of the event related field (ERF) M50 source dipoles on bilateral superior temporal gyrus (STG). The primary hypothesis was that there would be a positive correlation between lateralized M50 auditory sensory gating measures and negative symptoms in patients with schizophrenia. A standard paired-click paradigm was used during simultaneous EEG and MEG data collection to determine S2/S1 sensory gating ratios in a group of 20 patients for both neuroimaging techniques. Participants were administered the Schedule for the Assessment of Negative Symptoms (SANS), the Positive and Negative Symptom Scale (PANSS), and the Calgary Depression Scale for Schizophrenia. Consistent with previous reports, there was no relationship between ERP P50 sensory gating and negative symptoms. However, right (not left) hemisphere ERF M50 sensory gating ratio was significantly and positively correlated with negative symptoms. This finding is compatible with information processing theories of negative symptoms and with more recent findings of fronto-temporal abnormality in patients with predominantly negative symptoms.


Applied Physics Letters | 2010

Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer

Cort N. Johnson; Peter D. D. Schwindt; Michael P. Weisend

The authors have detected magnetic fields from the human brain with a compact, fiber-coupled rubidium spin-exchange-relaxation-free magnetometer. Optical pumping is performed on the D1 transition and Faraday rotation is measured on the D2 transition. The beams share an optical axis, with dichroic optics preparing beam polarizations appropriately. A sensitivity of <5 fT/Hz is achieved. Evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer. Recordings were validated by comparison with those taken by a commercial magnetoencephalography system. The design is amenable to arraying sensors around the head, providing a framework for noncryogenic, whole-head magnetoencephalography.


Human Brain Mapping | 2000

Sources on the anterior and posterior banks of the central sulcus identified from magnetic somatosensory evoked responses using Multi-Start Spatio-Temporal localization

Mingxiong Huang; Cheryl J. Aine; Larry E. Davis; R. Christner; Michael P. Weisend; Julia M. Stephen; Jeff Meyer; Joann Silveri; Mark Herman; Roland R. Lee

A Multi‐Start Spatio‐Temporal (MSST) multidipole localization algorithm was used to study sources on the anterior and posterior banks of the central sulcus localized from early somatosensory magnetoencephalography (MEG) responses. Electrical stimulation was applied to the right and left median nerves of 8 normal subjects. Two sources, one on the anterior and one on the posterior bank of the central sulcus, were localized from 16 data sets (8 subjects, 2 hemispheres). Compared with the more traditional practice of single‐dipole fits to peak latencies, MSST provided more reliable source locations. The temporal dynamics of the anterior and posterior central sulcus sources, obtained using MSST, showed considerable temporal overlap. In some cases, the two sources appeared synchronous. On the other hand, in the traditional single‐dipole peak‐latency fit approach, there is no time course other than a focal dipole moment activated only at the selected peak latency. The same group of subjects also performed a motor task involving index‐finger lifting; the anterior central sulcus source obtained from electrical median nerve stimulation localized to the same or similar region in the primary motor area identified from the finger‐lift task. The physiological significance of the anterior central sulcus source is discussed. The findings suggest that one can test the integrity of cortical tissue in the region of primary motor cortex using electrical somatosensory stimulation. Hum. Brain Mapping 11:59–76, 2000.

Collaboration


Dive into the Michael P. Weisend's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland R. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Irwin

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge