Michael Peitz
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Peitz.
Nature | 2011
Samer M.I. Hussein; Nizar N. Batada; Sanna Vuoristo; Reagan W. Ching; Reija Autio; Elisa Närvä; Siemon Ng; Michel Sourour; Riikka H. Hämäläinen; Cia Olsson; Karolina Lundin; Milla Mikkola; Ras Trokovic; Michael Peitz; Oliver Brüstle; David P. Bazett-Jones; Kari Alitalo; Riitta Lahesmaa; Andras Nagy; Timo Otonkoski
The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.
Nature | 2014
Se Hoon Choi; Young Hye Kim; Matthias Hebisch; Seungkyu Lee; Carla D’Avanzo; Hechao Chen; Basavaraj Hooli; Caroline Asselin; Julien Muffat; Justin B Klee; Can-wen Zhang; Brian J. Wainger; Michael Peitz; Dora M. Kovacs; Clifford J. Woolf; Steven L. Wagner; Rudolph E. Tanzi; Doo Yeon Kim
Alzheimer’s disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer’s disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer’s disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer’s disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer’s disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer’s disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Michael Peitz; Kurt Pfannkuche; Klaus Rajewsky; Frank Edenhofer
Conditional mutagenesis is a powerful tool to analyze gene functions in mammalian cells. The site-specific recombinase Cre can be used to recombine loxP-modified alleles under temporal and spatial control. However, the efficient delivery of biologically active Cre recombinase to living cells represents a limiting factor. In this study we compared the potential of a hydrophobic peptide modified from Kaposi fibroblast growth factor with a basic peptide derived from HIV-TAT to promote cellular uptake of recombinant Cre. We present the production and characterization of a Cre protein that enters mammalian cells and subsequently performs recombination with high efficiency in a time- and concentration-dependent manner. Histidine-tagged Cre recombinase transduced inefficiently unless fused to a nuclear localization signal (NLS). Fusion of NLS-Cre to the fibroblast growth factor transduction peptide did not improve the transducibility, whereas fusion with the TAT peptide significantly enhanced cellular uptake and subsequent recombination. More than 95% recombination efficiency in fibroblast cells, as well as murine embryonic stem cells, was achieved after His-TAT-NLS-Cre transduction. Efficient recombination could also be obtained in primary splenocytes ex vivo. We expect that application of His-TAT-NLS-Cre, which can be produced readily in large quantities from a bacterial source, will expand our abilities to manipulate mammalian genomes.
Nature | 2011
Philipp Koch; Peter Breuer; Michael Peitz; Johannes Jungverdorben; Jaideep Kesavan; Daniel Poppe; Jonas Doerr; Julia Ladewig; Jerome Mertens; Thomas Tüting; Per Hoffmann; Thomas Klockgether; Bernd O. Evert; Ullrich Wüllner; Oliver Brüstle
Machado–Joseph disease (MJD; also called spinocerebellar ataxia type 3) is a dominantly inherited late-onset neurodegenerative disorder caused by expansion of polyglutamine (polyQ)-encoding CAG repeats in the MJD1 gene (also known as ATXN3). Proteolytic liberation of highly aggregation-prone polyQ fragments from the protective sequence of the MJD1 gene product ataxin 3 (ATXN3) has been proposed to trigger the formation of ATXN3-containing aggregates, the neuropathological hallmark of MJD. ATXN3 fragments are detected in brain tissue of MJD patients and transgenic mice expressing mutant human ATXN3(Q71), and their amount increases with disease severity, supporting a relationship between ATXN3 processing and disease progression. The formation of early aggregation intermediates is thought to have a critical role in disease initiation, but the precise pathogenic mechanism operating in MJD has remained elusive. Here we show that l-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates Ca2+-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. This phenotype could be abolished by calpain inhibition, confirming a key role of this protease in ATXN3 aggregation. Aggregate formation was further dependent on functional Na+ and K+ channels as well as ionotropic and voltage-gated Ca2+ channels, and was not observed in iPSCs, fibroblasts or glia, thereby providing an explanation for the neuron-specific phenotype of this disease. Our data illustrate that iPSCs enable the study of aberrant protein processing associated with late-onset neurodegenerative disorders in patient-specific neurons.
Science | 2015
Jörg Ruschel; Farida Hellal; Kevin C. Flynn; Sebastian Dupraz; David A. Elliott; Andrea Tedeschi; Margaret L. Bates; Gary Brook; Kristina Dobrindt; Michael Peitz; Oliver Brüstle; Michael D. Norenberg; Armin Blesch; Norbert Weidner; Mary Bartlett Bunge; John L. Bixby; Frank Bradke
Progress toward fixing a broken back? Axon regeneration after a spinal cord injury requires interference with neuronal mechanisms to promote axon extension and early suppression of scar formation. Microtubule stabilization could provide, in principle, a basis for such intervention. Ruschel et al. used animal models of spinal cord injury, time-lapse imaging in vivo, primary neuronal cultures, and behavioral studies to tackle this challenge (see the Perspective by Tran and Silver). They showed that epothilone B, a U.S. Food and Drug Administration–approved microtubule-stabilizing drug that can cross the blood-brain barrier, does promote functional axon regeneration, even after injury. Science, this issue p. 347; see also p. 285 Stabilizing microtubules after a spinal cord injury reduces the migratory activity of scar-forming meningeal fibroblasts. [Also see Perspective by Tran and Silver] After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier–permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.
Blood | 2008
Josette-Renee Landry; Sarah Kinston; Kathy Knezevic; Marella de Bruijn; Nicola K. Wilson; Wade T Nottingham; Michael Peitz; Frank Edenhofer; John E. Pimanda; Katrin Ottersbach; Berthold Göttgens
Transcription factors such as Scl/Tal1, Lmo2, and Runx1 are essential for the development of hematopoietic stem cells (HSCs). However, the precise mechanisms by which these factors interact to form transcriptional networks, as well as the identity of the genes downstream of these regulatory cascades, remain largely unknown. To this end, we generated an Scl(-/-) yolk sac cell line to identify candidate Scl target genes by global expression profiling after reintroduction of a TAT-Scl fusion protein. Bioinformatics analysis resulted in the identification of 9 candidate Scl target transcription factor genes, including Runx1 and Runx3. Chromatin immunoprecipitation confirmed that both Runx genes are direct targets of Scl in the fetal liver and that Runx1 is also occupied by Scl in the yolk sac. Furthermore, binding of an Scl-Lmo2-Gata2 complex was demonstrated to occur on the regions flanking the conserved E-boxes of the Runx1 loci and was shown to transactivate the Runx1 element. Together, our data provide a key component of the transcriptional network of early hematopoiesis by identifying downstream targets of Scl that can explain key aspects of the early Scl(-/-) phenotype.
Science | 2015
Jörg Ruschel; Farida Hellal; Kevin C. Flynn; Sebastian Dupraz; David A. Elliott; Andrea Tedeschi; Margaret L. Bates; Gary Brook; Kristina Dobrindt; Michael Peitz; Oliver Brüstle; Norenberg; Armin Blesch; Norbert Weidner; Mary Bartlett Bunge; John L. Bixby; Frank Bradke
Progress toward fixing a broken back? Axon regeneration after a spinal cord injury requires interference with neuronal mechanisms to promote axon extension and early suppression of scar formation. Microtubule stabilization could provide, in principle, a basis for such intervention. Ruschel et al. used animal models of spinal cord injury, time-lapse imaging in vivo, primary neuronal cultures, and behavioral studies to tackle this challenge (see the Perspective by Tran and Silver). They showed that epothilone B, a U.S. Food and Drug Administration–approved microtubule-stabilizing drug that can cross the blood-brain barrier, does promote functional axon regeneration, even after injury. Science, this issue p. 347; see also p. 285 Stabilizing microtubules after a spinal cord injury reduces the migratory activity of scar-forming meningeal fibroblasts. [Also see Perspective by Tran and Silver] After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier–permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.
Brain | 2012
Stephanie Hucke; Juliane Floßdorf; Berit Grützke; Ildiko R. Dunay; Kathrin Frenzel; Johannes Jungverdorben; Bettina Linnartz; Matthias Mack; Michael Peitz; Oliver Brüstle; Christian Kurts; Thomas Klockgether; Harald Neumann; Marco Prinz; Heinz Wiendl; Percy A. Knolle; Luisa Klotz
During central nervous system autoimmunity, interactions between infiltrating immune cells and brain-resident cells are critical for disease progression and ultimately organ damage. Here, we demonstrate that local cross-talk between invading autoreactive T cells and auto-antigen-presenting myeloid cells within the central nervous system results in myeloid cell activation, which is crucial for disease progression during experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. This T cell-mediated licensing of central nervous system myeloid cells triggered astrocytic CCL2-release and promoted recruitment of inflammatory CCR2(+)-monocytes, which are the main effectors of disease progression. By employing a cell-specific knockout model, we identify the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in myeloid cells as key regulator of their disease-determining interactions with autoreactive T cells and brain-resident cells, respectively. LysM-PPARγ(KO) mice exhibited disease exacerbation during the effector phase of experimental autoimmune encephalomyelitis characterized by enhanced activation of central nervous system myeloid cells accompanied by pronounced local CCL2 production and inflammatory monocyte invasion, which finally resulted in increased demyelination and neuronal damage. Pharmacological PPARγ activation decreased antigen-specific T cell-mediated licensing of central nervous system myeloid cells, reduced myeloid cell-mediated neurotoxicity and hence dampened central nervous system autoimmunity. Importantly, human monocytes derived from patients with multiple sclerosis clearly responded to PPARγ-mediated control of proinflammatory activation and production of neurotoxic mediators. Furthermore, PPARγ in human monocytes restricted their capacity to activate human astrocytes leading to dampened astrocytic CCL2 production. Together, interference with the disease-promoting cross-talk between central nervous system myeloid cells, autoreactive T cells and brain-resident cells represents a novel therapeutic approach that limits disease progression and lesion development during ongoing central nervous system autoimmunity.
Stem cell reports | 2014
Caroline Kubaczka; Claire E. Senner; Marcos J. Araúzo-Bravo; Neha Sharma; Peter Kuckenberg; Astrid Becker; Andreas Zimmer; Oliver Brüstle; Michael Peitz; Myriam Hemberger; Hubert Schorle
Summary Trophoblast stem cells (TSCs) are in vitro equivalents to the precursor cells of the placenta. TSCs are cultured in serum-rich medium with fibroblast growth factor 4, heparin, and embryonic-fibroblast-conditioned medium. Here, we developed a simple medium consisting of ten chemically defined ingredients for culture of TSCs on Matrigel or synthetic substrates, named TX medium. Gene expression and DNA methylation profiling demonstrated the faithful propagation of expression profiles and epigenomic characteristics of TSCs cultured in TX. Further, TX medium supported the de novo derivation of TSC lines. Finally, TSCs cultured in TX differentiate into all derivatives of the trophectodermal lineage in vitro, give rise to hemorrhagic lesions in nude mice, and chimerize the placenta, indicating that they retained all hallmarks of TSCs. TX media formulation no longer requires fetal bovine serum and conditioned medium, which facilitates and standardizes the culture of this extraembryonic lineage.
Molecular and Cellular Biology | 2011
Peter Kuckenberg; Michael Peitz; Caroline Kubaczka; Astrid Becker; Angela Egert; Eva Wardelmann; Andreas Zimmer; Oliver Brüstle; Hubert Schorle
ABSTRACT In mammals, the first cell fate decision is initialized by cell polarization at the 8- to 16-cell stage of the preimplantation embryo. At this stage, outside cells adopt a trophectoderm (TE) fate, whereas the inside cell population gives rise to the inner cell mass (ICM). Prior to implantation, transcriptional interaction networks and epigenetic modifications divide the extraembryonic and embryonic fate irrevocably. Here, we report that extraembryonic trophoblast stem cell (TSC) lines are converted to induced pluripotent stem cells (TSC-iPSCs) by overexpressing Oct4, Sox2, Klf4, and cMyc. Methylation studies and gene array analyses indicated that TSC-iPSCs had adopted a pluripotent potential. The rate of conversion was lower than those of somatic reprogramming experiments, probably due to the unique genetic network controlling extraembryonic lineage fixation. Both in vitro and in vivo, TSC-iPSCs differentiated into tissues representing all three embryonic germ layers, indicating that somatic cell fate could be induced. Finally, TSC-iPSCs chimerized the embryo proper and contributed to the germ line of mice, indicating that these cells had acquired full somatic differentiation potential. These results lead to a better understanding of the molecular processes that govern the first lineage decision in mammals.