Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Pensiero is active.

Publication


Featured researches published by Michael Pensiero.


The Journal of Infectious Diseases | 2013

Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery

Spyros A. Kalams; Scott Parker; Marnie Elizaga; Barbara Metch; Srilatha Edupuganti; John Hural; Stephen C. De Rosa; Donald K. Carter; Kyle Rybczyk; Ian Frank; Jonathan D. Fuchs; Beryl A. Koblin; Denny H. Kim; Patrice Joseph; Michael C. Keefer; Lindsey R. Baden; John H. Eldridge; Jean D. Boyer; Adam Sherwat; Massimo Cardinali; Mary Allen; Michael Pensiero; Christopher Collett Butler; Amir S. Khan; Jian Yan; Niranjan Y. Sardesai; James G. Kublin; David B. Weiner

BACKGROUND DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. METHODS HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1-uninfected adults 18-50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. RESULTS Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4(+) or CD8(+) T-cell response after the second vaccination, and 88.9% developed a CD4(+) or CD8(+) T-cell response after the third vaccination. CONCLUSIONS Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans.


The Journal of Infectious Diseases | 2014

Specificity and 6-Month Durability of Immune Responses Induced by DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-Like Particles

Paul A. Goepfert; Marnie Elizaga; Kelly E. Seaton; Georgia D. Tomaras; David C. Montefiori; Alicia Sato; John Hural; Stephen DeRosa; Spyros A. Kalams; M. Juliana McElrath; Michael C. Keefer; Lindsey R. Baden; Javier R. Lama; Jorge Sanchez; Mark J. Mulligan; Susan Buchbinder; Scott M. Hammer; Beryl A. Koblin; Michael Pensiero; Christopher Collett Butler; Bernard Moss; Harriet L. Robinson; Yeycy Donastorg; Li Qin; Dale N. Lawrence; Massimo Cardinali; Jin Bae; Renée Holt; Huguette Redinger; Jan Johannessen

BACKGROUND Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)-uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. METHODS A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. RESULTS At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4(+) T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8(+) T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4(+) and CD8(+) T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. CONCLUSIONS DDMM and MMM vaccinations with virus-like particle-expressing immunogens elicited durable antibody and T-cell responses.


Vaccine | 2011

A phase I trial of preventive HIV vaccination with heterologous poxviral-vectors containing matching HIV-1 inserts in healthy HIV-uninfected subjects

Michael C. Keefer; Sharon E. Frey; Marnie Elizaga; Barbara Metch; Stephen C. De Rosa; Paulo Feijó Barroso; Georgia D. Tomaras; Massimo Cardinali; Paul A. Goepfert; Artur Kalichman; Valerie Philippon; M. Juliana McElrath; Xia Jin; Guido Ferrari; Olivier D. Defawe; Gail P. Mazzara; David C. Montefiori; Michael Pensiero; Dennis Panicali; Lawrence Corey

We evaluated replication-defective poxvirus vectors (modified vaccinia Ankara [MVA] and fowlpox [FPV]) in a homologous and heterologous vector prime-boost vaccination regimen containing matching HIV inserts (MVA-HIV and FPV-HIV) given at months 0, 1, 3, 5 and 7 in 150 healthy HIV-negative vaccinia-naïve participants. FPV-HIV alone was poorly immunogenic, while the high dose (10(9)pfu/2 ml) of MVA-HIV alone elicited maximal responses after two injections: CD4+ and CD8+ T-cell responses in 26/55 (47.3%) and 5/60 (8.3%) of participants, respectively, and IFN-γ ELISpot responses in 28/62 (45.2%). The infrequent CD8+ T-cell responses following MVA-HIV priming were boosted only by the heterologous (FPV-HIV) construct in 14/27 (51.9%) of participants post 4th vaccination. Alternatively, HIV envelope-specific binding antibodies were demonstrated in approximately two-thirds of recipients of the homologous boosting regimen, but in less than 20% of subjects after the heterologous vector boost. Thus, a heterologous poxvirus vector prime-boost regimen can induce HIV-specific CD8+ T-cell and CD4+ T-cell responses, which may be an important feature of an optimal regimen for preventive HIV vaccination.


Open Forum Infectious Diseases | 2015

First-in-Human Evaluation of the Safety and Immunogenicity of a Recombinant Vesicular Stomatitis Virus Human Immunodeficiency Virus-1 gag Vaccine (HVTN 090).

Jonathan D. Fuchs; Ian Frank; Marnie Elizaga; Mary Allen; Nicole Frahm; Nidhi Kochar; Sue Li; Srilatha Edupuganti; Spyros A. Kalams; Georgia D. Tomaras; Rebecca L. Sheets; Michael Pensiero; Marc A. Tremblay; Terry J. Higgins; Theresa Latham; Michael A. Egan; David K. Clarke; John H. Eldridge

Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 103 to 3.4 × 107 particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases.


Journal of Virology | 2015

Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research.

Lindsay Wieczorek; Shelly J. Krebs; Vaniambadi Kalyanaraman; Stephen Whitney; Sodsai Tovanabutra; Carlos G. Moscoso; Eric Sanders-Buell; Constance Williams; Bonnie M. Slike; Sebastian Molnar; Vincent Dussupt; S. Munir Alam; Agnès Laurence Chenine; Tina Tong; Edgar L. Hill; Hua-Xin Liao; Michael Hoelscher; Leonard Maboko; Susan Zolla-Pazner; Barton F. Haynes; Michael Pensiero; Francine E. McCutchan; Shawyon Malek-Salehi; R. Holland Cheng; Merlin L. Robb; Thomas C. VanCott; Nelson L. Michael; Mary Marovich; Carl R. Alving; Gary R. Matyas

ABSTRACT Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected “fan blade” motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.


The Journal of Infectious Diseases | 2013

Recent Advances in Humanized Mice: Accelerating the Development of an HIV Vaccine

Andrew M. Tager; Michael Pensiero; Todd M. Allen

Recent advances in the development of humanized mice hold great promise to advance our understanding of protective immunity to human immunodeficiency virus (HIV) infection and to aid in the design of an effective HIV vaccine. This supplement of the Journal of Infectious Diseases summarizes work in the humanized mouse model presented at an HIV Humanized Mouse workshop in Boston, Massachusetts, in November 2012, including recent advances in the development of humanized mice, the trafficking of human immune cells following mucosal HIV transmission, the role of immune activation and Toll-like receptor agonists in the control of HIV, the induction and efficacy of HIV-specific cellular and humoral immune responses, and the preclinical modeling of novel anti-HIV therapeutics. Many gaps remain in our understanding of how to design an effective HIV vaccine and novel therapeutics to eliminate the viral reservoir. Promising early results from studies in humanized mice suggest great potential and enthusiasm for this model to accelerate these critical areas of HIV research.


Clinical and Vaccine Immunology | 2016

Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap

Glenda Gray; Kenneth H. Mayer; Marnie Elizaga; Linda-Gail Bekker; Mary Allen; Lynn Morris; David C. Montefiori; Stephen C. De Rosa; Alicia Sato; Niya Gu; Georgia D. Tomaras; Timothy Tucker; Susan W. Barnett; Nonhlanhla N. Mkhize; Xiaoying Shen; Katrina Downing; Carolyn Williamson; Michael Pensiero; Lawrence Corey; Anna-Lise Williamson

ABSTRACT A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.)


The Lancet HIV | 2018

Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial

Linda-Gail Bekker; Zoe Moodie; Nicole Grunenberg; Fatima Laher; Georgia D. Tomaras; Kristen W. Cohen; Mary Allen; Mookho Malahleha; Kathryn Mngadi; Brodie Daniels; Craig Innes; Carter Bentley; Nicole Frahm; Daryl Morris; Lynn Morris; Nonhlanhla N. Mkhize; David C. Montefiori; Marcella Sarzotti-Kelsoe; Shannon Grant; Chenchen Yu; Vijay Mehra; Michael Pensiero; Sanjay Phogat; Carlos A. DiazGranados; Susan W. Barnett; Niranjan Kanesa-thasan; Marguerite Koutsoukos; Nelson L. Michael; Merlin L. Robb; James G. Kublin

Summary Background Modest efficacy was reported for the HIV vaccine tested in the RV144 trial, which comprised a canarypox vector (ALVAC) and envelope (env) glycoprotein (gp120). These vaccine components were adapted to express HIV-1 antigens from strains circulating in South Africa, and the adjuvant was changed to increase immunogenicity. Furthermore, 12-month immunisation was added to improve durability. In the HIV Vaccine Trials Network (HVTN) 100 trial, we aimed to assess this new regionally adapted regimen for advancement to efficacy testing. Methods HVTN 100 is a phase 1/2, randomised controlled, double-blind trial at six community research sites in South Africa. We randomly allocated adults (aged 18–40 years) without HIV infection and at low risk of HIV infection to either the vaccine regimen (intramuscular injection of ALVAC-HIV vector [vCP2438] at 0, 1, 3, 6, and 12 months plus bivalent subtype C gp120 and MF59 adjuvant at 3, 6, and 12 months) or placebo, in a 5:1 ratio. Randomisation was done by computer-generated list. Participants, investigators, and those assessing outcomes were masked to random assignments. Primary outcomes included safety and immune responses associated with correlates of HIV risk in RV144, 2 weeks after vaccination at 6 months (month 6·5). We compared per-protocol participants (ie, those who completed the first four vaccinations and provided samples at month 6·5) from HVTN 100 with stored RV144 samples assayed contemporaneously. This trial is registered with the South African National Clinical Trials Registry (DOH-27-0215-4796) and ClinicalTrials.gov (NCT02404311). Findings Between Feb 9, 2015, and May 26, 2015, 252 participants were enrolled, of whom 210 were assigned vaccine and 42 placebo. 222 participants were included in the per-protocol analysis (185 vaccine and 37 placebo). 185 (100%) vaccine recipients developed IgG binding antibodies to all three vaccine-matched gp120 antigens with significantly higher titres (3·6–8·8 fold; all p<0·0001) than the corresponding vaccine-matched responses of RV144. The CD4+ T-cell response to the ZM96.C env protein in HVTN 100 was 56·4% (n=102 responders), compared with a response of 41·4% (n=79 responders) to 92TH023.AE in RV144 (p=0·0050). The IgG response to the 1086.C variable loops 1 and 2 (V1V2) env antigen in HVTN 100 was 70·5% (95% CI 63·5–76·6; n=129 responders), lower than the response to V1V2 in RV144 (99·0%, 95% CI 96·4–99·7; n=199 responders). Interpretation Although the IgG response to the HVTN 100 vaccine was lower than that reported in RV144, it exceeded the predicted 63% threshold needed for 50% vaccine efficacy using a V1V2 correlate of protection model. Thus, the subtype C HIV vaccine regimen qualified for phase 2b/3 efficacy testing, a critical next step of vaccine development. Funding US National Institute of Allergy and Infectious Diseases (NIAID), and Bill & Melinda Gates Foundation.


PLOS ONE | 2016

Sequential Immunization with gp140 boosts immune responses primed by modified vaccinia Ankara or DNA in HIV-uninfected South African participants

Gavin Churchyard; Koleka Mlisana; Shelly Karuna; Anna-Lise Williamson; Carolyn Williamson; Lynn Morris; Georgia D. Tomaras; Stephen C. De Rosa; Peter B. Gilbert; Niya Gu; Chenchen Yu; Nonhlanhla N. Mkhize; Tandile Hermanus; Mary Allen; Michael Pensiero; Susan W. Barnett; Glenda Gray; Linda-Gail Bekker; David C. Montefiori; James G. Kublin; Lawrence Corey

Background The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM), SAAVI MVA-C (2.9 x 109 pfu IM) and Novartis V2-deleted subtype C gp140 (100 mcg) with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa. Methods Participants at three South African sites were randomized (1:1:1:1) to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P); concurrent MVA/gp140 (MP/MP); DNA prime, sequential MVA boost (D/D/M/M); DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP) or placebo. Peak HIV specific humoral and cellular responses were measured. Results 184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18–42 years) and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens. Conclusions The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen. Trial Registration ClinicalTrials.gov NCT01418235


Retrovirology | 2012

Rapid development of cross-clade neutralizing antibody responses after clade B gp120/gp140 protein priming and clade c gp140 protein boosting

Paul Spearman; Georgia D. Tomaras; David C. Montefiori; Yunda Huang; Hasan Ahmed; Marnie Elizaga; John Hural; Julie McElrath; L. Ouedraogo; Michael Pensiero; C. Butler; Spyros A. Kalams; Edgar Turner Overton; Susan W. Barnett

Background Immunization with heterologous Env protein immunogens following an immunologic rest period has the potential to generate cross-clade neutralizing antibody responses. We identified individuals who had received a clade B Env protein with MF59 4-17 years earlier, most in combination with a DNA or ALVAC prime, and administered a clade C protein boost in an open label phase 1 trial. Methods

Collaboration


Dive into the Michael Pensiero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marnie Elizaga

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Mary Allen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen C. De Rosa

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

James G. Kublin

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

John Hural

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge