Michael Piatak
Leidos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Piatak.
Science | 1996
Jeff Linnen; John Wages; Zhen-Yong Zhang-Keck; Kirk E. Fry; Krzysztof Krawczynski; Harvey J. Alter; Eugene V. Koonin; Margaret Gallagher; Miriam J. Alter; Stephanos J. Hadziyannis; Peter Karayiannis; Kevin Fung; Yoshiyuki Nakatsuji; J. Wai‐Kuo Shih; Lavonne Young; Michael Piatak; Cameron Hoover; John Fernandez; Stacie Chen; Jian-Chao Zou; Timothy T. Morris; Kenneth C. Hyams; S. Ismay; Jeffrey D. Lifson; Georg Hess; Steven K. H. Foung; Howard C. Thomas; Daniel G. Bradley; Harold S. Margolis; Jungsuh P. Kim
An RNA virus, designated hepatitis G virus (HGV), was identified from the plasma of a patient with chronic hepatitis. Extension from an immunoreactive complementary DNA clone yielded the entire genome (9392 nucleotides) encoding a polyprotein of 2873 amino acids. The virus is closely related to GB virus C (GBV-C) and distantly related to hepatitis C virus, GBV-A, and GBV-B. HGV was associated with acute and chronic hepatitis. Persistent viremia was detected for up to 9 years in patients with hepatitis. The virus is transfusion-transmissible. It has a global distribution and is present within the volunteer blood donor population in the United States.
Nature | 2011
Scott G. Hansen; Julia C. Ford; Matthew S. Lewis; Abigail B. Ventura; Colette M. Hughes; Lia Coyne-Johnson; Nathan Whizin; Kelli Oswald; Rebecca Shoemaker; Tonya Swanson; Alfred W. Legasse; Maria J. Chiuchiolo; Christopher L. Parks; Michael K. Axthelm; Jay A. Nelson; Michael A. Jarvis; Michael Piatak; Jeffrey D. Lifson; Louis J. Picker
The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (TEM) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIVMAC239 infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4+ memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8+ T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8+ or CD4+ lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated TEM responses might significantly contribute to an efficacious HIV/AIDS vaccine.
Nature Medicine | 2009
Scott G. Hansen; Cassandra Vieville; Nathan Whizin; Lia Coyne-Johnson; Don C. Siess; Derek D. Drummond; Alfred W. Legasse; Michael K. Axthelm; Kelli Oswald; Charles M. Trubey; Michael Piatak; Jeffrey D. Lifson; Jay A. Nelson; Michael A. Jarvis; Louis J. Picker
The rapid onset of massive, systemic viral replication during primary HIV or simian immunodeficiency virus (SIV) infection and the immune evasion capabilities of these viruses pose fundamental problems for vaccines that depend upon initial viral replication to stimulate effector T cell expansion and differentiation. We hypothesized that vaccines designed to maintain differentiated effector memory T cell (TEM cell) responses at viral entry sites might improve efficacy by impairing viral replication at its earliest stage, and we have therefore developed SIV protein-encoding vectors based on rhesus cytomegalovirus (RhCMV), the prototypical inducer of life-long TEM cell responses. RhCMV vectors expressing SIV Gag, Rev-Tat-Nef and Env persistently infected rhesus macaques, regardless of preexisting RhCMV immunity, and primed and maintained robust, SIV-specific CD4+ and CD8+ TEM cell responses (characterized by coordinate tumor necrosis factor, interferon-γ and macrophage inflammatory protein-1β expression, cytotoxic degranulation and accumulation at extralymphoid sites) in the absence of neutralizing antibodies. Compared to control rhesus macaques, these vaccinated rhesus macaques showed increased resistance to acquisition of progressive SIVmac239 infection upon repeated limiting-dose intrarectal challenge, including four macaques who controlled rectal mucosal infection without progressive systemic dissemination. These data suggest a new paradigm for AIDS vaccine development—vaccines capable of generating and maintaining HIV-specific TEM cells might decrease the incidence of HIV acquisition after sexual exposure.
Nature Medicine | 2004
Thomas C. Friedrich; Elizabeth Dodds; Levi Yant; Lara Vojnov; Richard Rudersdorf; Candice Cullen; David T. Evans; Ronald C. Desrosiers; Bianca R. Mothé; John Sidney; Alessandro Sette; Kevin J. Kunstman; Steven M. Wolinsky; Michael Piatak; Jeffrey D. Lifson; Austin L. Hughes; Nancy A. Wilson; David H. O'Connor; David I. Watkins
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.
Nature | 2013
Scott G. Hansen; Michael Piatak; Abigail B. Ventura; Colette M. Hughes; Roxanne M. Gilbride; Julia C. Ford; Kelli Oswald; Rebecca Shoemaker; Yuan Li; Matthew S. Lewis; Awbrey N. Gilliam; Guangwu Xu; Nathan Whizin; Benjamin J. Burwitz; Shannon L. Planer; John M. Turner; Alfred W. Legasse; Michael K. Axthelm; Jay A. Nelson; Klaus Früh; Jonah B. Sacha; Jacob D. Estes; Brandon F. Keele; Paul T. Edlefsen; Jeffrey D. Lifson; Louis J. Picker
Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69–172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.
Nature | 2013
Masashi Shingai; Yoshiaki Nishimura; Florian Klein; Hugo Mouquet; Olivia K. Donau; Ronald J. Plishka; Alicia Buckler-White; Michael S. Seaman; Michael Piatak; Jeffrey D. Lifson; Dimiter S. Dimitrov; Michel C. Nussenzweig; Malcolm A. Martin
Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9, 10, 11, 12, 13, 14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian–human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4–7 days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3–5 weeks in some long-term chronically SHIV-infected animals with low CD4+ T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.
Journal of Experimental Medicine | 2004
Louis J. Picker; Shoko I. Hagen; Richard Lum; Edward F. Reed-Inderbitzin; Lyn M. Daly; Andrew W. Sylwester; Joshua M. Walker; Don C. Siess; Michael Piatak; Chenxi Wang; David B. Allison; Vernon C. Maino; Jeffrey D. Lifson; Toshiaki Kodama; Michael K. Axthelm
The mechanisms linking human immunodeficiency virus replication to the progressive immunodeficiency of acquired immune deficiency syndrome are controversial, particularly the relative contribution of CD4+ T cell destruction. Here, we used the simian immunodeficiency virus (SIV) model to investigate the relationship between systemic CD4+ T cell dynamics and rapid disease progression. Of 18 rhesus macaques (RMs) infected with CCR5-tropic SIVmac239 (n = 14) or CXCR4-tropic SIVmac155T3 (n = 4), 4 of the former group manifested end-stage SIV disease by 200 d after infection. In SIVmac155T3 infections, naive CD4+ T cells were dramatically depleted, but this population was spared by SIVmac239, even in rapid progressors. In contrast, all SIVmac239-infected RMs demonstrated substantial systemic depletion of CD4+ memory T cells by day 28 after infection. Surprisingly, the extent of CD4+ memory T cell depletion was not, by itself, a strong predictor of rapid progression. However, in all RMs destined for stable infection, this depletion was countered by a striking increase in production of short-lived CD4+ memory T cells, many of which rapidly migrated to tissue. In all rapid progressors (P < 0.0001), production of these cells initiated but failed by day 42 of infection, and tissue delivery of new CD4+ memory T cells ceased. Thus, although profound depletion of tissue CD4+ memory T cells appeared to be a prerequisite for early pathogenesis, it was the inability to respond to this depletion with sustained production of tissue-homing CD4+ memory T cells that best distinguished rapid progressors, suggesting that mechanisms of the CD4+ memory T cell generation play a crucial role in maintaining immune homeostasis in stable SIV infection.
Journal of Virology | 2001
Jeffrey D. Lifson; Jeffrey L. Rossio; Michael Piatak; Thomas Parks; Li Li; Rebecca Kiser; Vicky Coalter; Brad Fisher; Bernard M. Flynn; Susan Czajak; Vanessa M. Hirsch; Keith A. Reimann; Joern E. Schmitz; John Ghrayeb; Norbert Bischofberger; Martin A. Nowak; Ronald C. Desrosiers; Dominik Wodarz
ABSTRACT Transient antiretroviral treatment with tenofovir, (R)-9-(2-phosphonylmethoxypropyl)adenine, begun shortly after inoculation of rhesus macaques with the highly pathogenic simian immunodeficiency virus (SIV) isolate SIVsmE660, facilitated the development of SIV-specific lymphoproliferative responses and sustained effective control of the infection following drug discontinuation. Animals that controlled plasma viremia following transient postinoculation treatment showed substantial resistance to subsequent intravenous rechallenge with homologous (SIVsmE660) and highly heterologous (SIVmac239) SIV isolates, up to more than 1 year later, despite the absence of measurable neutralizing antibody. In some instances, resistance to rechallenge was observed despite the absence of detectable SIV-specific binding antibody and in the face of SIV lymphoproliferative responses that were low or undetectable at the time of challenge. In vivo monoclonal antibody depletion experiments demonstrated a critical role for CD8+ lymphocytes in the control of viral replication; plasma viremia rose by as much as five log units after depletion of CD8+ cells and returned to predepletion levels (as low as <100 copy Eq/ml) as circulating CD8+ cells were restored. The extent of host control of replication of highly pathogenic SIV strains and the level of resistance to heterologous rechallenge achieved following transient postinoculation treatment compared favorably to the results seen after SIVsmE660 and SIVmac239 challenge with many vaccine strategies. This impressive control of viral replication was observed despite comparatively modest measured immune responses, less than those often achieved with vaccination regimens. The results help establish the underlying feasibility of efforts to develop vaccines for the prevention of AIDS, although the exact nature of the protective host responses involved remains to be elucidated.
Journal of Medical Primatology | 2005
A. Nichole Cline; Julian W. Bess; Michael Piatak; Jeffrey D. Lifson
Abstract: As new assay methods for quantitative reverse transcription‐polymerase chain reaction (RT‐PCR), such as real time RT‐PCR techniques, approach theoretical limits of per reaction sensitivity, further increments in the sensitivity of measurements of viral load can only be achieved by increasing the amount of input RNA per reaction. We describe a robust, convenient, rapid integrated approach for specimen preparation and real time RT‐PCR assay for plasma simian immunodeficiency virus (SIV) RNA viral load that provides a threshold sensitivity of 10 copy Eq/ml, and tolerates less than optimally processed specimens. The method provides accurate quantitation of viral load for the SIV virus isolates in common use for non‐human primate studies. We demonstrate the utility of the method in sensitively tracking viral load in an animal showing effective control of viral replication to levels below the threshold for quantitation in conventional assays.
Journal of Experimental Medicine | 2007
Afam A. Okoye; Martin Meier-Schellersheim; Jason M. Brenchley; Shoko I. Hagen; Joshua M. Walker; Mukta Rohankhedkar; Richard Lum; John B. Edgar; Shannon L. Planer; Alfred W. Legasse; Andrew W. Sylwester; Michael Piatak; Jeffrey D. Lifson; Vernon C. Maino; Donald L. Sodora; Michael K. Axthelm; Zvi Grossman; Louis J. Picker
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells.