Michael Piazza
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Piazza.
Biochemistry | 2012
Michael Piazza; K Futrega; Donald E. Spratt; Thorsten Dieckmann; Joseph Guy Guillemette
Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes. Knowledge of how this is regulated is important. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic. To investigate the dynamic properties of CaM-NOS interactions, we determined the solution structure of CaM bound to the inducible NOS (iNOS) and endothelial NOS (eNOS) CaM binding region peptides. In addition, we investigated the effect of CaM phosphorylation. Tyrosine 99 (Y99) of CaM is reported to be phosphorylated in vivo. We have produced a phosphomimetic Y99E CaM to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. All three mammalian NOS isoforms were included in the investigation. Our results show that a phosphomimetic Y99E CaM significantly reduces the maximal synthase activity of eNOS by 40% while having little effect on nNOS or iNOS activity. A comparative nuclear magnetic resonance study between phosphomimetic Y99E CaM and wild-type CaM bound to the eNOS CaM binding region peptide was performed. This investigation provides important insights into how the increased electronegativity of a phosphorylated CaM protein affects the binding, dynamics, and activation of the NOS enzymes.
Biochemistry | 2014
Michael Piazza; Valentina Taiakina; Simon R. Guillemette; J. Guy Guillemette; Thorsten Dieckmann
Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes, and it is important to understand how this enzyme is regulated. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood at this time. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic and at least in part controlled by several possible phosphorylation sites. We have determined the solution structure of CaM bound to a peptide that contains a phosphorylated threonine corresponding to Thr495 in full size endothelial NOS (eNOS) to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. Our biophysical studies show that phosphorylation of Thr495 introduces electrostatic repulsions between the target sequence and CaM as well as a diminished propensity for the peptide to form an α-helix. The calcium affinity of the CaM-target peptide complex is reduced because of phosphorylation, and this leads to weaker binding at low physiological calcium concentrations. This study provides an explanation for the reduced level of NO production by eNOS carrying a phosphorylated Thr495 residue.
Biochemistry | 2015
Michael Piazza; J. Guy Guillemette; Thorsten Dieckmann
The intracellular Ca²⁺ concentration is an important regulator of many cellular functions. The small acidic protein calmodulin (CaM) serves as a Ca²⁺ sensor and control element for many enzymes. Nitric oxide synthase (NOS) is one of the proteins that is activated by CaM and plays a major role in a number of key physiological and pathological processes. Previous studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. We have analyzed the structure and dynamics of complexes formed by peptides based on inducible NOS (iNOS) and endothelial NOS (eNOS) with CaM at Ca²⁺ concentrations that mimic the physiological basal (17 and 100 nM) and elevated levels (225 nM) found in mammalian cells using fluorescence techniques and nuclear magnetic resonance spectroscopy. The results show the CaM-NOS complexes have similar structures at physiological and fully saturated Ca²⁺ levels; however, their dynamics are remarkably different. At 225 nM Ca²⁺, the CaM-NOS complexes show overall an increase in backbone dynamics, when compared to the dynamics of the complexes at saturating Ca²⁺ concentrations. Specifically, the N-lobe of CaM in the CaM-iNOS complex displays a lower internal mobility (higher S²) and higher exchange protection compared to those of the CaM-eNOS complex. In contrast, the C-lobe of CaM in the CaM-eNOS complex is less dynamic. These results illustrate that structures of CaM-NOS complexes determined at saturated Ca²⁺ concentrations cannot provide a complete picture because the differences in intramolecular dynamics become visible only at physiological Ca²⁺ levels.
Biochemistry | 2017
Michael Piazza; Valentina Taiakina; Thorsten Dieckmann; J. Guy Guillemette
Calmodulin (CaM) is a cytosolic Ca2+-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca2+, joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca2+ in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca2+-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca2+-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.
Biochemistry | 2016
Michael Piazza; Thorsten Dieckmann; Joseph Guy Guillemette
The small acidic protein calmodulin (CaM) serves as a Ca2+ sensor and control element for many enzymes including nitric oxide synthase (NOS) enzymes that play major roles in key physiological and pathological processes. CaM binding causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. In this report, NMR spectroscopy was used to determine the solution structure of the endothelial NOS (eNOS) peptide in complex with CaM at the lowest Ca2+ concentration (225 nM) required for CaM to bind to eNOS and corresponds to a physiological elevated Ca2+ level found in mammalian cells. Under these conditions, the CaM-eNOS complex has a Ca2+-replete C-terminal lobe bound to the eNOS peptide and a Ca2+ free N-terminal lobe loosely associated with the eNOS peptide. With increasing Ca2+ concentration, the binding of Ca2+ by the N-lobe of CaM results in a stronger interaction with the C-terminal region of the eNOS peptide and increased α-helical structure of the peptide that may be part of the mechanism resulting in electron transfer from the FMN to the heme in the oxygenase domain of the enzyme. Surface plasmon resonance studies performed under the same conditions show Ca2+ concentration-dependent binding kinetics were consistent with the NMR structural results. This investigation shows that structural studies performed under more physiological relevant conditions provide information on subtle changes in structure that may not be apparent when experiments are performed in excess Ca2+ concentrations.
Journal of Biological Chemistry | 2017
Jean Chemin; Valentina Taiakina; Arnaud Monteil; Michael Piazza; Wendy Guan; Robert F. Stephens; Ashraf Kitmitto; Zhiping P. Pang; Annette C. Dolphin; Edward Perez-Reyes; Thorsten Dieckmann; Joseph Guy Guillemette; J. David Spafford
Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM.
Biomolecular Nmr Assignments | 2015
Michael Piazza; J. Guy Guillemette; Thorsten Dieckmann
The regulation of nitric oxide synthase (NOS) by calmodulin (CaM) plays a major role in a number of key physiological and pathological processes. A detailed molecular level picture of how this regulation is achieved is critical for drug development and for our understanding of protein regulation in general. CaM is a small acidic calcium binding protein and is required to fully activate NOS. The exact mechanism of how CaM activates NOS is not fully understood at this time. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. The interaction of CaM with NOS is modified by a number of post-translation modifications including phosphorylation. Here we present backbone and sidechain 1H, 15N NMR assignments of modified CaM interacting with NOS peptides which provides the basis for a detailed study of CaM–NOS interaction dynamics using 15N relaxation methods.
Biomolecular Nmr Assignments | 2016
Michael Piazza; J. Guy Guillemette; Thorsten Dieckmann
AbstractCalmodulin (CaM) is a ubiquitous cytosolic Ca2+-binding protein able to bind and regulate hundreds of different proteins. It consists of two globular domains joined by a flexible central linker region. Each one of these domains contains two EF hand pairs capable of binding to Ca2+. Upon Ca2+ binding CaM undergoes a conformational change exposing hydrophobic patches that interact with its intracellular target proteins. CaM is able to bind to target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+ binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. One target protein of CaM is nitric oxide synthase, which catalyzes the production of nitric oxide. At elevated Ca2+ concentrations, CaM binds to neuronal NOS and endothelial NOS, making them the Ca2+-dependent NOS enzymes. In contrast, inducible NOS is transcriptionally regulated in vivo and binds to CaM at basal levels of Ca2+. Here we report the NMR backbone and sidechain resonance assignments of C-lobe Ca2+-replete and deplete CaM12, N-lobe Ca2+-replete and deplete CaM34, CaM1234 in the absence of Ca2+ and N-lobe Ca2+-replete CaM34 with the iNOS CaM-binding domain peptide.
Journal of Labelled Compounds and Radiopharmaceuticals | 2011
Michael Piazza; Yay Duangkham; Donald E. Spratt; Thorsten Dieckmann; J. Guy Guillemette
eLS | 2008
Thorsten Dieckmann; Michael Piazza; Eric Bonneau; Pascale Legault