Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Puderbach is active.

Publication


Featured researches published by Michael Puderbach.


Magnetic Resonance in Medicine | 2009

Non‐contrast‐enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI

Grzegorz Bauman; Michael Puderbach; Michael Deimling; Vladimir Jellus; Christophe Chefd'hotel; Julien Dinkel; Christian Hintze; Hans-Ulrich Kauczor; Lothar R. Schad

Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow‐up of pulmonary diseases. In this work a new method of non‐contrast‐enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two‐dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole‐body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion‐ and ventilation‐weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non‐contrast‐enhanced perfusion and ventilation data. Magn Reson Med, 2009.


Insights Into Imaging | 2012

MRI of the lung (1/3): methods

Jim M. Wild; Helen Marshall; Michael Bock; Lothar R. Schad; Peter M. Jakob; Michael Puderbach; F. Molinari; E.J.R. van Beek; J. Biederer

AbstractProton magnetic resonance imaging (MRI) has recently emerged as a clinical tool to image the lungs. This paper outlines the current technical aspects of MRI pulse sequences, radiofrequency (RF) coils and MRI system requirements needed for imaging the pulmonary parenchyma and vasculature. Lung MRI techniques are presented as a “technical toolkit”, from which MR protocols will be composed in the subsequent papers for comprehensive imaging of lung disease and function (parts 2 and 3). This paper is pitched at MR scientists, technicians and radiologists who are interested in understanding and establishing lung MRI methods. Images from a 1.5 T scanner are used for illustration of the sequences and methods that are highlighted. Main Messages • Outline of the hardware and pulse sequence requirements for proton lung MRI• Overview of pulse sequences for lung parenchyma, vascular and functional imaging with protons• Demonstration of the pulse-sequence building blocks for clinical lung MRI protocols


Investigative Radiology | 2007

Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: Comparison to thin-section CT and chest x-ray

Michael Puderbach; Monika Eichinger; Julie Haeselbarth; Sebastian Ley; Annette Kopp-Schneider; Siegfried Tuengerthal; Astrid Schmaehl; Christian Fink; Christian Plathow; Matthias Wiebel; Sueha Demirakça; Frank Michael Müller; Hans-Ulrich Kauczor

Objectives:As pulmonary complications are life limiting in patients with cystic fibrosis (CF), repeated chest imaging [chest x-ray, computed tomography (CT)] is needed for follow up. With the continuously rising life expectancy of CF patients, magnetic resonance imaging (MRI) as a radiation-free imaging modality might become more and more attractive. The goal of this study was to prospectively assess the value of MRI for evaluation of morphologic pulmonary CF-changes in comparison to established imaging modalities. Materials and Methods:Thirty-one CF patients (19 female, 12 male; mean age 16.7 years) with stable lung disease were examined by MRI: HASTE, coronal/transversal (TR/TE/α/TA: infinite/28 ms/180°/18 s), multi-detector computed tomography (MDCT) (30 patients): 120 kV, dose modulated mAs, and chest x-ray (21 patients). Image evaluation: random order, 4 chest radiologists in consensus; chest x-ray: modified Chrispin-Norman score; CT and MRI: modified Helbich score. The maximal attainable score for chest x-ray was 34, for MRI and CT 25. Median scores, Pearson correlation coefficients, Bland-Altman plots, and concordance of MRI to CT on a lobar and segmental basis were calculated. Results:The median MRI and MDCT scores were 13 (min 3, max 20) respectively 13.5 (min 0, max 20). The median chest x-ray score was 14 (min 5, max 32). Pearson correlation coefficients: MRI/CT = 0.80, P < 0.0001; MRI/chest x-ray = 0.63, P < 0.0018; chest x-ray/CT = 0.75, P < 0.0001. The median lobe related concordance was 80% for bronchiectasis, 77% for mucus plugging, 93%, for sacculation/abscesses, and 100% for collapse/consolidation. Conclusions:Morphologic MRI of the lung in CF patients demonstrates comparable results to MDCT and chest x-ray. Because radiation exposure is an issue in CF patients, MRI might have the ability to be used as an appropriate alternative method for pulmonary imaging.


Investigative Radiology | 2005

Evaluation of Lung Volumetry Using Dynamic Three-dimensional Magnetic Resonance Imaging

Christian Plathow; Max Schoebinger; Christian Fink; Sebastian Ley; Michael Puderbach; Monika Eichinger; Michael Bock; Hans-Peter Meinzer; Hans-Ulrich Kauczor

Rationale and Objectives:We sought to investigate lung volume and surface measurements during the breathing cycle using dynamic three-dimensional magnetic resonance imaging (3D MRI). Materials and Methods:Breathing cycles of 20 healthy volunteers were examined using a 2D trueFISP sequence (3 images/second) in combination with a model and segmented 3D FLASH sequence (1 image/second) MR images using view sharing. Segmentation was performed semiautomatically using an interactive region growing technique. Vital capacity (VC) was calculated from MRI using the model (2D) and counting the voxels (3D) and was compared with spirometry. Results:VC from spirometry was 4.9 ± 0.9 L, 4.4 ± 1.2 L from 2D MRI measurement, and 4.7 ± 0.9 L for 3D MRI. Using the 3D technique, correlation to spirometry was higher than using the 2D technique (r > 0.95 vs. r > 0.83). Using the 3D technique, split lung volumes and lung surface could be calculated. There was a significant difference between the left and right lung volume in expiration (P < 0.05). Conclusions:Dynamic 3D MRI is a noninvasive tool to evaluate split lung volumes and lung surfaces during the breathing cycle with a high correlation to spirometry.


Insights Into Imaging | 2012

MRI of the lung (3/3)—current applications and future perspectives

J. Biederer; Saeed Mirsadraee; M. Beer; F. Molinari; Christian Hintze; Grzegorz Bauman; Marcus Both; E.J.R. van Beek; Jim M. Wild; Michael Puderbach

AbstractBackgroundMRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women.MethodsProvided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value.ResultsIn interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a “buffet” of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice.ConclusionNew developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information.• It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients.• In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT.• In interstitial lung disease, it serves for research, but the clinical value remains to be proven.• New users are advised to make themselves familiar with the particular advantages and limitations.


European Journal of Radiology | 2012

Morphologic and functional scoring of cystic fibrosis lung disease using MRI

Monika Eichinger; Daiva Elzbieta Optazaite; Annette Kopp-Schneider; Christian Hintze; J. Biederer; Anne Niemann; Marcus A. Mall; Mark O. Wielpütz; Hans-Ulrich Kauczor; Michael Puderbach

Magnetic resonance imaging (MRI) gains increasing importance in the assessment of cystic fibrosis (CF) lung disease. The aim of this study was to develop a morpho-functional MR-scoring-system and to evaluate its intra- and inter-observer reproducibility and clinical practicability to monitor CF lung disease over a broad severity range from infancy to adulthood. 35 CF patients with broad age range (mean 15.3 years; range 0.5-42) were examined by morphological and functional MRI. Lobe based analysis was performed for parameters bronchiectasis/bronchial-wall-thickening, mucus plugging, abscesses/sacculations, consolidations, special findings and perfusion defects. The maximum global score was 72. Two experienced radiologists scored the images at two time points (interval 10 weeks). Upper and lower limits of agreement, concordance correlation coefficients (CCC), total deviation index and coverage probability were calculated for global, morphology, function, component and lobar scores. Global scores ranged from 6 to 47. Intra- and inter-reader agreement for global scores were good (CCC: 0.98 (R1), 0.94 (R2), 0.97 (R1/R2)) and were comparable between high and low scores. Our results indicate that the proposed morpho-functional MR-scoring-system is reproducible and applicable for semi-quantitative evaluation of a large spectrum of CF lung disease severity. This scoring-system can be applied for the routine assessment of CF lung disease and maybe as endpoint for clinical trials.


European Radiology | 2007

Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension.

Sebastian Ley; Derliz Mereles; Michael Puderbach; Ekkehard Gruenig; Helena Schock; Monika Eichinger; Julia Ley-Zaporozhan; Christian Fink; Hans-Ulrich Kauczor

Goals of our study were to compare the pulmonary hemodynamics between healthy volunteers and patients with pulmonary arterial hypertension (PAH) and correlate MR flow measurements with echocardiography. Twenty-five patients with PAH and 25 volunteers were examined at 1.5 T. Phase-contrast flow measurements were performed in the ascending aorta and pulmonary trunk, resulting in the following parameters: peak velocity (cm/s), average blood flow (l/min), time to peak velocity (ms), velocity rise gradient and pulmonary distensibility (cm2). The bronchosystemic shunt was calculated. In PAH patients transthoracic echocardiography and right-heart catheterization (RHC) served as the gold standard. In comparison to volunteers, the PAH patients showed significantly reduced pulmonary velocities (P = 0.002), blood flow (P = 0.002) and pulmonary distensibility (P = 0.008). In patients, the time to peak velocity was shorter (P<0.001), and the velocity rise gradient was steeper (P = 0.002) than in volunteers. While in volunteers the peak velocity in the aorta was reached earlier, it was the reverse in patients. Patients showed a significant bronchosystemic shunt (P = 0.01). No meaningful correlation was found between MRI measurements and echocardiography or RHC. MRI is a feasible technique for the differentiation between PAH and volunteers. Further studies have to be conducted for the absolute calculation of pressure estimates.


Journal of Magnetic Resonance Imaging | 2010

Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease

Monika Eichinger; Claus Peter Heussel; Hans-Ulrich Kauczor; Harm A.W.M. Tiddens; Michael Puderbach

Computed tomography (CT) is the current “gold standard” for assessment of lung morphology and is so far the most reliable imaging modality for monitoring cystic fibrosis (CF) lung disease. CT has a much higher radiation exposure than chest x‐ray. The cumulative radiation dose for life‐long repeated CT scans has limited its use for CF patients as their life expectancy increases. Clearly, no dose would be preferable over low dose when the same or more relevant information can be obtained. Magnetic resonance imaging (MRI) is comparable to CT with regard to the detection of most morphological changes in the CF lung. It is thought to be less sensitive to detect small airway disease. At the same time, MRI is superior to CT when it comes to the assessment of functional changes such as altered pulmonary perfusion. The recommendation is to further reduce radiation dose related to the use of CT and to use MRI in the follow‐up of morphological changes where possible. J. Magn. Reson. Imaging 2010;32:1370–1378.


European Radiology | 2005

Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences

Christian Fink; Michael Puderbach; Sebastian Ley; Julia Zaporozhan; Christian Plathow; Hans-Ulrich Kauczor

The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75–76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273±45; pMRA: 280±71; PV: TREAT: 273±33; pMRA: 258±62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality.


Pediatric Radiology | 2010

The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

Michael Puderbach; Monika Eichinger

Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy.

Collaboration


Dive into the Michael Puderbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Ley

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Eichinger

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Plathow

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Ley-Zaporozhan

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge