Michael R. Akins
Drexel University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael R. Akins.
The Journal of Neuroscience | 2007
Adam I. Fogel; Michael R. Akins; Alexander J. Krupp; Massimiliano Stagi; Valentin Stein; Thomas Biederer
Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.
The Journal of Neuroscience | 2009
Sean B. Christie; Michael R. Akins; James E. Schwob; Justin R. Fallon
The loss of Fragile X mental retardation protein (FMRP) causes Fragile X syndrome, the most common inherited mental retardation and single gene cause of autism. Although postsynaptic functions for FMRP are well established, potential roles at the presynaptic apparatus remain largely unexplored. Here, we characterize the expression of FMRP and its homologs, FXR1P and FXR2P, in the developing, mature and regenerating rodent nervous system, with a focus on presynaptic expression. As expected, FMRP is expressed in the somatodendritic domain in virtually all neurons. However, FMRP is also localized in discrete granules (Fragile X granules; FXGs) in a subset of brain regions including frontal cortex, hippocampal area CA3 and olfactory bulb glomeruli. Immunoelectron microscopy shows that FMRP is localized at presynaptic terminals and in axons within these FXG-rich regions. With the exception of the olfactory bulb, FXGs are prominent only in the developing brain. Experiments in regenerating olfactory circuits indicate that peak FXG expression occurs 2–4 weeks after neurogenesis, a period that correlates with synapse formation and refinement. Virtually all FXGs contain FXR2P, while region-selective subsets harbor FMRP and/or FXR1P. Genetic studies show that FXR2P is essential for FXG expression, while FMRP regulates FXG number and developmental profile. These findings suggest that Fragile X proteins play a distinct, presynaptic role during discrete developmental epochs in defined circuits of the mammalian CNS. We propose that the neurological defects in Fragile X syndrome, including the autistic features, could be due in part to the loss of FMRP function in presynaptic compartments.
Current Opinion in Neurobiology | 2006
Michael R. Akins; Thomas Biederer
Synaptogenesis is a finely organized process, intriguing in its precise temporal and spatial resolution. It occurs as the dendrite of a postsynaptic neuron and an incoming axon communicate at defined sites to establish a stable synapse together. The molecular cues that guide synaptogenesis are now beginning to be identified, and cell surface interactions at synaptic sites participate prominently in the key steps. Interactions include trans-synaptic adhesion of pre- and post-synaptic neurons but also binding to non-neuronal neighboring cells and the extracellular matrix. These signals recruit scaffolding molecules, other adhesion molecules, and neurotransmitter receptors to bring together the key components of functional synapses. Recent progress provides stimulating insights into the role of adhesion and signaling molecules in the formation and function of synaptic specializations.
Developmental Psychobiology | 2012
Kevin G. Bath; Michael R. Akins; Francis S. Lee
The sensory processing of odorants is a dynamic process that requires plasticity at multiple levels. In the olfactory bulb (OB), inhibitory interneurons undergo lifelong replacement through a process known as adult neurogenesis. These newly born cells are incorporated in a learning-dependent fashion, a process which has led some to suggest this as a primary mechanism through which the OB retains a high degree of plasticity throughout life. A continued focus of researchers in this field has been to understand the molecular mechanisms controlling adult subventricular zone (SVZ) neurogenesis and the innate functional role of these cells. Brain-derived neurotrophic factor (BDNF) has been identified as a strong candidate molecule regulating adult OB neurogenesis. We review what is known regarding the functional role of newly born cells, highlight the role of BDNF in this process, and describe preliminary findings from our lab implicating BDNF in the process of selecting of newly born cells for survival.
The Journal of Comparative Neurology | 2008
Lisa A. Thomas; Michael R. Akins; Thomas Biederer
Cell‐cell interactions through adhesion molecules play key roles in the development of the nervous system. Synaptic cell adhesion molecules (SynCAMs) comprise a group of four immunoglobulin (Ig) superfamily members that mediate adhesion and are prominently expressed in the brain. Although SynCAMs have been implicated in the differentiation of neurons, there has been no comprehensive analysis of their expression patterns. Here we examine the spatiotemporal expression patterns of SynCAMs by using reverse transcriptase‐polymerase chain reaction, in situ hybridization, and immunohistological techniques. SynCAMs 1–4 are widely expressed throughout the developing and adult central nervous system. They are prominently expressed in neurons throughout the brain and are present in both excitatory and inhibitory neurons. Investigation of different brain regions in the developing and mature mouse brain indicates that each SynCAM exhibits a distinct spatiotemporal expression pattern. This is observed in all regions analyzed and is particularly notable in the cerebellum, where SynCAMs display highly distinct expression in cerebellar granule and Purkinje cells. These unique expression profiles are complemented by specific heterophilic adhesion patterns of SynCAM family members, as shown by cell overlay experiments. Three prominent interactions are observed, mediated by the extracellular domains of SynCAMs 1/2, 2/4, and 3/4. These expression and adhesion profiles of SynCAMs together with their previously reported functions in synapse organization indicate that SynCAM proteins contribute importantly to the synaptic circuitry of the central nervous system. J. Comp. Neurol. 510:47–67, 2008.
The Journal of Comparative Neurology | 2012
Michael R. Akins; Hannah F. LeBlanc; Emily E. Stackpole; Eunice Chyung; Justin R. Fallon
Loss of Fragile X mental retardation protein (FMRP) leads to Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism. Although the functions of FMRP and its homologs FXR1P and FXR2P are well studied in the somatodendritic domain, recent evidence suggests that this family of RNA binding proteins also plays a role in the axonal and presynaptic compartments. Fragile X granules (FXGs) are morphologically and genetically defined structures containing Fragile X proteins that are expressed axonally and presynaptically in a subset of circuits. To further understand the role of presynaptic Fragile X proteins in the brain, we systematically mapped the FXG distribution in the mouse central nervous system. This analysis revealed both the circuits and the neuronal types that express FXGs. FXGs are enriched in circuits that mediate sensory processing and motor planning—functions that are particularly perturbed in FXS patients. Analysis of FXG expression in the hippocampus suggests that CA3 pyramidal neurons use presynaptic Fragile X proteins to modulate recurrent but not feedforward processing. Neuron‐specific FMRP mutants revealed a requirement for neuronal FMRP in the regulation of FXGs. Finally, conditional FMRP ablation demonstrated that FXGs are expressed in axons of thalamic relay nuclei that innervate cortex, but not in axons of thalamic reticular nuclei, striatal nuclei, or cortical neurons that innervate thalamus. Together, these findings support the proposal that dysregulation of axonal and presynaptic Fragile X proteins contribute to the neurological symptoms of FXS. J. Comp. Neurol. 520:3687–3706, 2012.
Frontiers in Neural Circuits | 2009
Michael R. Akins; Hanna E. Berk-Rauch; Justin R. Fallon
The ability of the nervous system to convert transient experiences into long-lasting structural changes at the synapse relies upon protein synthesis. It has become increasingly clear that a critical subset of this synthesis occurs within the synaptic compartment. While this process has been extensively characterized in the postsynaptic compartment, the contribution of local translation to presynaptic function remains largely unexplored. However, recent evidence highlights the potential importance of translation within the presynaptic compartment. Work in cultured neurons has shown that presynaptic translation occurs specifically at synapses undergoing long-term plasticity and may contribute to the maintenance of nascent synapses. Studies from our laboratory have demonstrated that Fragile X proteins, which regulate mRNA localization and translation, are expressed at the presynaptic apparatus. Further, mRNAs encoding presynaptic proteins traffic into axons. Here we discuss recent advances in the study of presynaptic translation as well as the challenges confronting the field. Understanding the regulation of presynaptic function by local protein synthesis promises to shed new light on activity-dependent modification of synaptic architecture.
eLife | 2015
Alondra Schweizer Burguete; Sandra Almeida; Fen-Biao Gao; Robert G. Kalb; Michael R. Akins; Nancy M. Bonini
Microsatellite expansions are the leading cause of numerous neurodegenerative disorders. Here we demonstrate that GGGGCC and CAG microsatellite repeat RNAs associated with C9orf72 in amyotrophic lateral sclerosis/frontotemporal dementia and with polyglutamine diseases, respectively, localize to neuritic granules that undergo active transport into distal neuritic segments. In cultured mammalian spinal cord neurons, the presence of neuritic GGGGCC repeat RNA correlates with neuronal branching defects, and the repeat RNA localizes to granules that label with fragile X mental retardation protein (FMRP), a transport granule component. Using a Drosophila GGGGCC expansion disease model, we characterize dendritic branching defects that are modulated by FMRP and Orb2. The human orthologs of these modifiers are misregulated in induced pluripotent stem cell-differentiated neurons (iPSNs) from GGGGCC expansion carriers. These data suggest that expanded repeat RNAs interact with the messenger RNA transport and translation machinery, causing transport granule dysfunction. This could be a novel mechanism contributing to the neuronal defects associated with C9orf72 and other microsatellite expansion diseases. DOI: http://dx.doi.org/10.7554/eLife.08881.001
The Journal of Comparative Neurology | 2007
Michael R. Akins; Deanna L. Benson; Charles A. Greer
Although odor receptors have been implicated in establishing the topography of olfactory sensory neurons (OSNs) in the olfactory bulb (OB), it is likely other molecules are also involved. The cadherins (CDHs) are a large family of cell adhesion molecules that mediate cell:cell interactions elsewhere in the central nervous system. However, their distribution and role in the olfactory system have remained largely unexplored. We previously demonstrated that intracellular binding partners of cadherins, the catenins, have unique spatiotemporal patterns of expression in the developing olfactory system. To further our understanding of cadherin function within the developing olfactory system, we now report on the localization of 11 classical cadherins—CDH1, 2, 3, 4, 5, 6, 8, 10, 11, 13, and 15. We demonstrate the expression of all but CDH5 and CDH15 in neuronal and/or glial cells in primary olfactory structures. CDH1 and CDH2 are expressed by OSNs; CDH2 expression closely parallels that seen for γ‐catenin in OSN axons. CDH3 and CDH11 are expressed by olfactory ensheathing glia, which surround OSN axons in the outer OB. CDH2, CDH4, and CDH6 are expressed within neuropil. CDH2, CDH4, CDH6, CDH8, CDH10, CDH11, and CDH13 are expressed by projection neurons within the main and accessory OBs. We conclude that cadherin proteins in the developing olfactory system are positioned to underlie the formation of the odorant map and local circuits within the OB. J. Comp. Neurol. 501:483–497, 2007.
The Journal of Comparative Neurology | 2006
Michael R. Akins; Charles A. Greer
The projection of olfactory sensory neuron (OSN) axons to the olfactory bulb (OB) is a complex but well‐regulated process. Although odorant receptor proteins, and other molecules, are implicated in this process, our understanding remains incomplete. We demonstrate that axons remain restricted to the outer olfactory nerve layer (ONLo) until they are proximal to their target glomeruli, where they enter the inner ONL (ONLi), dividing the ONL into extension and sorting zones. Sorting is likely contingent on cell:cell interactions mediated in part by cell adhesion molecules. The cadherins are a large family of adhesion molecules whose function is contingent on their intracellular binding partners, the catenins, which in turn link to the cytoskeleton. We previously demonstrated that the organization of the cytoskeleton changed as olfactory sensory neuron axons moved from the ONLo to the ONLi. To further assess the role of cadherin mediated adhesion in the developing mouse ONL, we localized α‐, β‐, γ‐, δ‐, and p120‐catenins as well as neural cadherin (N‐cadherin; CDH2) in the OB. α‐ and β‐catenins are found throughout the OB and are uniform throughout the ONL. In contrast, γ‐catenin and CDH2 are expressed predominantly in the ONLo during perinatal development, but are uniform across the ONL beginning at P7 and into adulthood. Finally, p120‐ and δ‐catenins are expressed in nonoverlapping patterns by olfactory axons and OB neuronal dendrites, respectively. We conclude that γ‐catenin‐mediated CDH2 adhesion may influence OSN targeting by restricting axons to the ONLo until they reach the appropriate domain of the OB. J. Comp. Neurol. 499:979–989, 2006.