Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Bax is active.

Publication


Featured researches published by Michael R. Bax.


Computer Aided Surgery | 2000

Comparative tracking error analysis of five different optical tracking systems

Rasool Khadem; Clement C. Yeh; Mohammad Sadeghi-Tehrani; Michael R. Bax; Jeremy A. Johnson; Jacqueline Nerney Welch; Eric P. Wilkinson; Ramin Shahidi

OBJECTIVE Effective utilization of an optical tracking system for image-based surgical guidance requires optimal placement of the dynamic reference frame (DRF) with respect to the tracking camera. Unlike other studies that measure the overall accuracy of a particular navigation system, this study investigates the precision of one component of the navigation system: the optical tracking system (OTS). The precision of OTS measurements is quantified as jitter. By measuring jitter, one can better understand how system inaccuracies depend on the position of the DRF with respect to the camera. MATERIALS AND METHODS Both FlashPointtrade mark (Image Guided Technologies, Inc., Boulder, Colorado) and Polaristrade mark (Northern Digital Inc., Ontario, Canada) optical tracking systems were tested in five different camera and DRF configurations. A linear testing apparatus with a software interface was designed to facilitate data collection. Jitter measurements were collected over a single quadrant within the camera viewing volume, as symmetry was assumed about the horizontal and vertical axes. RESULTS Excluding the highest 5% of jitter, the FlashPoint cameras had an RMS jitter range of 0.028 +/- 0.012 mm for the 300 mm model, 0.051 +/- 0.038 mm for the 580 mm model, and 0.059 +/- 0.047 mm for the 1 m model. The Polaris camera had an RMS jitter range of 0.058 +/- 0.037 mm with an active DRF and 0.115 +/- 0.075 mm with a passive DRF. CONCLUSION Both FlashPoint and Polaris have jitter less than 0.11 mm, although the error distributions differ significantly. Total jitter for all systems is dominated by the component measured in the axis directed away from the camera.


IEEE Transactions on Medical Imaging | 2002

Implementation, calibration and accuracy testing of an image-enhanced endoscopy system

Ramin Shahidi; Michael R. Bax; Calvin R. Maurer; Jeremy A. Johnson; Eric P. Wilkinson; Bai Wang; Jay B. West; Martin J. Citardi; Kim Manwaring; Rasool Khadem

This paper presents a new method for image-guided surgery called image-enhanced endoscopy. Registered real and virtual endoscopic images (perspective volume renderings generated from the same view as the endoscope camera using a preoperative image) are displayed simultaneously; when combined with the ability to vary tissue transparency in the virtual images, this provides surgeons with the ability to see beyond visible surfaces and, thus, provides additional exposure during surgery. A mount with four photoreflective spheres is rigidly attached to the endoscope and its position and orientation is tracked using an optical position sensor. Generation of virtual images that are accurately registered to the real endoscopic images requires calibration of the tracked endoscope. The calibration process determines intrinsic parameters (that represent the projection of three-dimensional points onto the two-dimensional endoscope camera imaging plane) and extrinsic parameters (that represent the transformation from the coordinate system of the tracker mount attached to the endoscope to the coordinate system of the endoscope camera), and determines radial lens distortion. The calibration routine is fast, automatic, accurate and reliable, and is insensitive to rotational orientation of the endoscope. The routine automatically detects, localizes, and identifies dots in a video image snapshot of the calibration target grid and determines the calibration parameters from the sets of known physical coordinates and localized image coordinates of the target grid dots. Using nonlinear lens-distortion correction, which can be performed at real-time rates (30 frames per second), the mean projection error is less than 0.5 mm at distances up to 25 mm from the endoscope tip, and less than 1.0 mm up to 45 mm. Experimental measurements and point-based registration error theory show that the tracking error is about 0.5-0.7 mm at the tip of the endoscope and less than 0.9 mm for all points in the field of view of the endoscope camera at a distance of up to 65 mm from the tip. It is probable that much of the projection error is due to endoscope tracking error rather than calibration error. Two examples of clinical applications are presented to illustrate the usefulness of image-enhanced endoscopy. This method is a useful addition to conventional image-guidance systems, which generally show only the position of the tip (and sometimes the orientation) of a surgical instrument or probe on reformatted image slices.


Medical Physics | 2005

Design and application of an assessment protocol for electromagnetic tracking systems.

Johann Hummel; Michael R. Bax; Michael Figl; Yan Kang; Calvin R. Maurer; Wolfgang Birkfellner; Helmar Bergmann; Ramin Shahidi

This paper defines a simple protocol for competitive and quantified evaluation of electromagnetic tracking systems such as the NDI Aurora (A) and Ascension microBIRD with dipole transmitter (B). It establishes new methods and a new phantom design which assesses the reproducibility and allows comparability with different tracking systems in a consistent environment. A machined base plate was designed and manufactured in which a 50 mm grid of holes was precisely drilled for position measurements. In the center a circle of 32 equispaced holes enables the accurate measurement of rotation. The sensors can be clamped in a small mount which fits into pairs of grid holes on the base plate. Relative positional/orientational errors are found by subtracting the known distances/rotations between the machined locations from the differences of the mean observed positions/rotation. To measure the influence of metallic objects we inserted rods made of steel (SST 303, SST 416), aluminum, and bronze into the sensitive volume between sensor and emitter. We calculated the fiducial registration error and fiducial location error with a standard stylus calibration for both tracking systems and assessed two different methods of stylus calibration. The positional jitter amounted to 0.14 mm(A) and 0.08 mm(B). A relative positional error of 0.96mm±0.68mm, range -0.06 mm; 2.23 mm(A) and 1.14mm±0.78mm, range -3.72 mm; 1.57 mm(B) for a given distance of 50 mm was found. The relative rotation error was found to be 0.51° (A)/0.04° (B). The most relevant distortion caused by metallic objects results from SST 416. The maximum error 4.2mm(A)∕⩾100mm(B) occurs when the rod is close to the sensor(20 mm). While (B) is more sensitive with respect to metallic objects, (A) is less accurate concerning orientation measurements. (B) showed a systematic error when distances are calculated.


Physics in Medicine and Biology | 2006

Evaluation of a new electromagnetic tracking system using a standardized assessment protocol

Johann Hummel; Michael Figl; Wolfgang Birkfellner; Michael R. Bax; Ramin Shahidi; Calvin R. Maurer; Helmar Bergmann

This note uses a published protocol to evaluate a newly released 6 degrees of freedom electromagnetic tracking system (Aurora, Northern Digital Inc.). A practice for performance monitoring over time is also proposed. The protocol uses a machined base plate to measure relative error in position and orientation as well as the influence of metallic objects in the operating volume. Positional jitter (E(RMS)) was found to be 0.17 mm +/- 0.19 mm. A relative positional error of 0.25 mm +/- 0.22 mm at 50 mm offsets and 0.97 mm +/- 1.01 mm at 300 mm offsets was found. The mean of the relative rotation error was found to be 0.20 degrees +/- 0.14 degrees with respect to the axial and 0.91 degrees +/- 0.68 degrees for the longitudinal rotation. The most significant distortion caused by metallic objects is caused by 400-series stainless steel. A 9.4 mm maximum error occurred when the rod was closest to the emitter, 10 mm away. The improvement compared to older generations of the Aurora with respect to accuracy is substantial.


Physics in Medicine and Biology | 2008

2D/3D registration of endoscopic ultrasound to CT volume data

Johann Hummel; Michael Figl; Michael R. Bax; Helmar Bergmann; Wolfgang Birkfellner

This paper describes a computer-aided navigation system using image fusion to support endoscopic interventions such as the accurate collection of biopsy specimens. An endoscope provides the physician with real-time ultrasound (US) and a video image. An image slice that corresponds to the corresponding image from the US scan head is derived from a preoperative computed tomography (CT) or magnetic resonance image volume data set using oblique reformatting and displayed side by side with the US image. The position of the image acquired by the US scan head is determined by a miniaturized electromagnetic tracking system (EMTS) after calibrating the endoscopes scan head. The transformation between the patient coordinate system and the preoperative data set is calculated using a 2D/3D registration. This is achieved by calibrating an intraoperative interventional CT slice with an optical tracking system (OTS) using the same algorithm as for the US calibration. The slice is then used for 2D/3D registration with the coordinate system of the preoperative volume. The fiducial registration error (FRE) for the US calibration was 2.0 mm +/- 0.4 mm; the interventional CT FRE was 0.36 +/- 0.12 mm; and the 2D/3D registration target registration error (TRE) was 1.8 +/- 0.3 mm. The point-to-point registration between the OTS and the EMTS had an FRE of 0.9 +/- 0.4 mm. Finally, we found an overall TRE for the complete system to be 3.9 +/- 0.6 mm.


internaltional ultrasonics symposium | 2000

A real-time freehand 3D ultrasound system for image-guided surgery

Jacqueline Nerney Welch; Jeremy A. Johnson; Michael R. Bax; Rana Badr; Ramin Shahidi

Current freehand 3D ultrasound techniques separate the scanning or acquisition step from the visualization step. The process leads to a single image volume dataset that can be rendered for viewing later. While satisfactory for diagnostic purposes, the method is not useful for surgical guidance where the anatomy must be visualized in real time. The Image Guidance Laboratories are currently developing a freehand 3D ultrasound system that will allow real-time updates to the scanned volume data as well as the capability to simultaneously view cross-sections through the volume and a volume-rendered perspective view. The equipment used is not unlike other freehand 3D ultrasound systems: an optical tracking system for locating the position and orientation of the ultrasound probe, a video frame grabber for capturing ultrasound frames, and a high-performance computer for performing real-time volume updates and volume rendering. The system incorporates novel methods for inserting new frames into, and removing expired frames from, the volume dataset in real time. This paper reports on current work in progress, and focuses on methods unique to achieving real-time 3D visualization using freehand 3D ultrasound.


Proceedings of SPIE | 2009

Evaluation of dynamic electromagnetic tracking deviation

Johann Hummel; Michael Figl; Michael R. Bax; Ramin Shahidi; Helmar Bergmann; Wolfgang Birkfellner

Electromagnetic tracking systems (EMTSs) are widely used in clinical applications. Many reports have evaluated their static behavior and errors caused by metallic objects were examined. Although there exist some publications concerning the dynamic behavior of EMTSs the measurement protocols are either difficult to reproduce with respect of the movement path or only accomplished at high technical effort. Because dynamic behavior is of major interest with respect to clinical applications we established a simple but effective modal measurement easy to repeat at other laboratories. We built a simple pendulum where the sensor of our EMTS (Aurora, NDI, CA) could be mounted. The pendulum was mounted on a special bearing to guarantee that the pendulum path is planar. This assumption was tested before starting the measurements. All relevant parameters defining the pendulum motion such as rotation center and length are determined by static measurement at satisfactory accuracy. Then position and orientation data were gathered over a time period of 8 seconds and timestamps were recorded. Data analysis provided a positioning error and an overall error combining both position and orientation. All errors were calculated by means of the well know equations concerning pendulum movement. Additionally, latency - the elapsed time from input motion until the immediate consequences of that input are available - was calculated using well-known equations for mechanical pendulums for different velocities. We repeated the measurements with different metal objects (rods made of stainless steel type 303 and 416) between field generator and pendulum. We found a root mean square error (eRMS) of 1.02mm with respect to the distance of the sensor position to the fit plane (maximum error emax = 2.31mm, minimum error emin = -2.36mm). The eRMS for positional error amounted to 1.32mm while the overall error was 3.24 mm. The latency at a pendulum angle of 0° (vertical) was 7.8ms.


medical image computing and computer assisted intervention | 2001

Endoscope Calibration and Accuracy Testing for 3D/2D Image Registration

Rasool Khadem; Michael R. Bax; Jeremy A. Johnson; Eric P. Wilkinson; Ramin Shahidi

New surgical navigation techniques incorporate the use of live surgical endoscope video with 3D reconstructed MRI or CT images of a patients anatomy. This image-enhanced endoscopy requires calibration of the endoscope to accurately the register the real endoscope video to the virtual image. The calibration and accuracy testing of such a system and a simple yet effective linear method for lens-distortion compensation are described.


Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display | 2005

Standardized evaluation method for electromagnetic tracking systems

Johann Hummel; Calvin R. Maurer; Michael Figl; Michael R. Bax; Helmar Bergmann; Wolfgang Birkfellner; Ramin Shahidi

The major aim of this work was to define a protocol for evaluation of electromagnetic tracking systems (EMTS). Using this protocol we compared two commercial EMTS: the Ascension microBIRD (B) and NDI Aurora (A). To enable reproducibility and comparability of the assessments a machined base plate was designed, in which a 50 mm grid of holes is precision drilled for position measurements. A circle of 32 equispaced holes in the center enables the assessment of rotation. A small mount which fits into pairs of grid holes on the base plate is used to mount the sensor in a defined and rigid way. Relative positional/orientational errors are found by subtracting the known distances/rotations between the machined locations from the differences of the mean observed positions/rotation. To measure the influence of metallic objects we inserted rods (made of SST 303, SST 416, aluminum, and bronze) into the sensitive volume between sensor and emitter. Additionally the dynamic behavior was tested by using an optical sensor mounted on a spacer in a distance of 150 mm to the EMTS sensors. We found a relative positional error of 0.96mm +/- 0.68mm, range -0.06mm;2.23mm (A) and 1.14mm +/- 0.78mm, range -3.72mm;1.57mm (B) for a give distance of 50 mm. The positional jitter amounted to 0.14 mm(A) / 0.20mm (B). The relative rotation error was found to be 1.81 degrees(A) / 0.63 degrees(B). For the dynamic behavior we calculated an error of 1.63mm(A)/1.93mm(B). The most relevant distortion caused by metallic objects results from SST 416. The maximum error 4.2mm(A)/41.9mm(B) occurs when the rod is close to the sensor(20mm).


Archive | 2002

A fast and accurate method of ultrasound probe calibration for image-guided surgery

Jacqueline Nerney Welch; Michael R. Bax; Kensaku Mori; Thomas M. Krummel; Ramin Shahidi; Calvin R. Maurer

In 3D ultrasound systems that form a 3D image by tracking the ultrasound probe, calibration is the process of computing the transformation between the coordinate system of the 2D image and the tracking device attached to the probe. Several different approaches to calibration have been used successfully for 3D systems. The cross-wire phantom method produces accurate calibrations but is extremely time intensive. We present a new calibration method that produces calibrations that are as accurate as those produced by the cross-wire phantom method and are much faster and easier to perform.

Collaboration


Dive into the Michael R. Bax's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmar Bergmann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Johann Hummel

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Figl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Birkfellner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge