Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Duchen is active.

Publication


Featured researches published by Michael R. Duchen.


The Journal of Physiology | 2000

Mitochondria and calcium: from cell signalling to cell death

Michael R. Duchen

While a pathway for Ca2+ accumulation into mitochondria has long been established, its functional significance is only now becoming clear in relation to cell physiology and pathophysiology. The observation that mitochondria take up Ca2+ during physiological Ca2+ signalling in a variety of cell types leads to four questions: (i) ‘What is the impact of mitochondrial Ca2+ uptake on mitochondrial function?’ (ii) ‘What is the impact of mitochondrial Ca2+ uptake on Ca2+ signalling?’ (iii) ‘What are the consequences of impaired mitochondrial Ca2+ uptake for cell function?’ and finally (iv) ‘What are the consequences of pathological [Ca2+]c signalling for mitochondrial function?’ These will be addressed in turn. Thus: (i) accumulation of Ca2+ into mitochondria regulates mitochondrial metabolism and causes a transient depolarisation of mitochondrial membrane potential. (ii) Mitochondria may act as a spatial Ca2+ buffer in many cells, regulating the local Ca2+ concentration in cellular microdomains. This process regulates processes dependent on local cytoplasmic Ca2+ concentration ([Ca2+]c), particularly the flux of Ca2+ through IP3‐gated channels of the endoplasmic reticulum (ER) and the channels mediating capacitative Ca2+ influx through the plasma membrane. Consequently, mitochondrial Ca2+ uptake plays a substantial role in shaping [Ca2+]c signals in many cell types. (iii) Impaired mitochondrial Ca2+ uptake alters the spatiotemporal characteristics of cellular [Ca2+]c signalling and downregulates mitochondrial metabolism. (iv) Under pathological conditions of cellular [Ca2+]c overload, particularly in association with oxidative stress, mitochondrial Ca2+ uptake may trigger pathological states that lead to cell death. In the model of glutamate excitotoxicity, microdomains of [Ca2+]c are apparently central, as the pathway to cell death seems to require the local activation of neuronal nitric oxide synthase (nNOS), itself held by scaffolding proteins in close association with the NMDA receptor. Mitochondrial Ca2+ uptake in combination with NO production triggers the collapse of mitochondrial membrane potential, culminating in delayed cell death.


The Journal of Physiology | 1999

Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death

Michael R. Duchen

Over recent years, it has become clear that mitochondria play a central role in many key aspects of animal physiology and pathophysiology. Their central and ubiquitous task is clearly the production of ATP. Nevertheless, they also play subtle roles in glucose homeostasis, acting as the sensor for substrate supply in the transduction pathway that promotes insulin secretion by the pancreatic β‐cell and that modulates the excitability of the hypothalamic glucose‐sensitive neurons involved in appetite control. Mitochondria may also act as sensors of availability of oxygen, the other major mitochondrial substrate, in the regulation of respiration. Mitochondria take up calcium, and the high capacity mitochondrial calcium uptake pathway provides a mechanism that couples energy demand to increased ATP production through the calcium‐dependent upregulation of mitochondrial enzyme activity. Mitochondrial calcium accumulation may also have a substantial impact on the spatiotemporal dynamics of cellular calcium signals, with subtle differences of detail in different cell types. Recent work has also revealed the centrality of mitochondrial dysfunction as an irreversible step in the pathway to both necrotic and apoptotic cell death. This review looks at recent developments in these rapidly evolving areas of cell physiology in an attempt to draw together disparate areas of research into a common theme.


The Journal of Neuroscience | 2007

Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation

Andrey Y. Abramov; Antonella Scorziello; Michael R. Duchen

Ischemia is a major cause of brain damage, and patient management is complicated by the paradoxical injury that results from reoxygenation. We have now explored the generation of reactive oxygen species (ROS) in hippocampal and cortical neurons in culture in response to oxygen and glucose deprivation or metabolic inhibition and reoxygenation. Fluorescence microscopy was used to measure the rate of ROS generation using hydroethidine, dicarboxyfluorescein diacetate, or MitoSOX. ROS generation was correlated with changing mitochondrial potential (rhodamine 123), [Ca2+]c (fluo-4, fura-2, or Indo-1), or ATP consumption, indicated by increased [Mg2+]c. We found that three distinct mechanisms contribute to neuronal injury by generating ROS and oxidative stress, each operating at a different stage of ischemia and reperfusion. In response to hypoxia, mitochondria generate an initial burst of ROS, which is curtailed once mitochondria depolarize or prevented by previous depolarization with uncoupler. A second phase of ROS generation that followed after a delay was blocked by the xanthine oxidase (XO) inhibitor oxypurinol. This phase correlated with a rise in [Mg2+]c, suggesting XO activation by accumulating products of ATP consumption. A third phase of ROS generation appeared at reoxygenation. This was blocked by NADPH oxidase inhibitors and was absent in cells from gp91phox−/− knock-out mice. It was Ca2+ dependent, suggesting activation by increased [Ca2+]c during anoxia, itself partly attributable to glutamate release. Inhibition of either the NADPH oxidase or XO was significantly neuroprotective. Thus, oxidative stress contributes to cell death over and above the injury attributable to energy deprivation.


Molecular Cell | 2009

PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death

Sonia Gandhi; Alison Wood-Kaczmar; Zhi Yao; Helene Plun-Favreau; Emma Deas; Kristina Klupsch; Julian Downward; David S. Latchman; Sarah J. Tabrizi; Nicholas W. Wood; Michael R. Duchen; Andrey Y. Abramov

Summary Mutations in PINK1 cause autosomal recessive Parkinsons disease. PINK1 is a mitochondrial kinase of unknown function. We investigated calcium homeostasis and mitochondrial function in PINK1-deficient mammalian neurons. We demonstrate physiologically that PINK1 regulates calcium efflux from the mitochondria via the mitochondrial Na+/Ca2+ exchanger. PINK1 deficiency causes mitochondrial accumulation of calcium, resulting in mitochondrial calcium overload. We show that calcium overload stimulates reactive oxygen species (ROS) production via NADPH oxidase. ROS production inhibits the glucose transporter, reducing substrate delivery and causing impaired respiration. We demonstrate that impaired respiration may be restored by provision of mitochondrial complex I and II substrates. Taken together, reduced mitochondrial calcium capacity and increased ROS lower the threshold of opening of the mitochondrial permeability transition pore (mPTP) such that physiological calcium stimuli become sufficient to induce mPTP opening in PINK1-deficient cells. Our findings propose a mechanism by which PINK1 dysfunction renders neurons vulnerable to cell death.


The Journal of Neuroscience | 2004

β-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase

Andrey Y. Abramov; Laura Canevari; Michael R. Duchen

β-Amyloid (βA) peptide is strongly implicated in the neurodegeneration underlying Alzheimers disease, but the mechanisms of neurotoxicity remain controversial. This study establishes a central role for oxidative stress by the activation of NADPH oxidase in astrocytes as the cause of βA-induced neuronal death. βA causes a loss of mitochondrial potential in astrocytes but not in neurons. The mitochondrial response consists of Ca2+-dependent transient depolarizations superimposed on a slow collapse of potential. The slow response is both prevented by antioxidants and, remarkably, reversed by provision of glutamate and other mitochondrial substrates to complexes I and II. These findings suggest that the depolarization reflects oxidative damage to metabolic pathways upstream of mitochondrial respiration. Inhibition of NADPH oxidase by diphenylene iodonium or 4-hydroxy-3-methoxy-acetophenone blocks βA-induced reactive oxygen species generation, prevents the mitochondrial depolarization, prevents βA-induced glutathione depletion in both neurons and astrocytes, and protects neurons from cell death, placing the astrocyte NADPH oxidase as a primary target of βA-induced neurodegeneration.


Circulation | 2004

Transient Mitochondrial Permeability Transition Pore Opening Mediates Preconditioning-Induced Protection

Derek J. Hausenloy; Abigail Wynne; Michael R. Duchen; Derek M. Yellon

Background—Transient (low-conductance) opening of the mitochondrial permeability transition pore (mPTP) may limit mitochondrial calcium load and mediate mitochondrial reactive oxygen species (ROS) signaling. We hypothesize that transient mPTP opening and ROS mediate the protection associated with myocardial preconditioning and mitochondrial uncoupling. Methods and Results—Isolated perfused rat hearts were subjected to 35 minutes of ischemia/120 minutes of reperfusion, and the infarct-risk-volume ratio was determined by tetrazolium staining. Inhibiting mPTP opening during the preconditioning phase with cyclosporine-A (CsA, 0.2 μmol/L) or sanglifehrin-A (SfA, 1.0 μmol/L) abolished the protection associated with ischemic preconditioning (IPC) (20.2±3.6% versus 45.9±2.5% with CsA, 49.0±7.1% with SfA; P <0.001); and pharmacological preconditioning with diazoxide (Dzx, 30 μmol/L) (22.1±2.7% versus 46.3±3.0% with CsA, 48.4±5.5% with SfA; P <0.001), CCPA (the adenosine A1-receptor agonist, 200 nmol/L) (24.9±4.5% versus 54.4±6.6% with CsA, 42.6±9.0% with SfA; P <0.001), or 2,4-dinitrophenol (DNP, the mitochondrial uncoupler, 50 μmol/L) (15.7±2.7% versus 40.8±5.5% with CsA, 34.3±3.1% with SfA; P <0.001), suggesting that mPTP opening during the preconditioning phase is required to mediate protection in these settings. Inhibiting ROS during the preconditioning protocols with N-mercaptopropionylglycine (MPG, 1 mmol/L) also abolished the protection associated with IPC (20.2±3.6% versus 47.1±3.8% with MPG; P <0.001), diazoxide (22.1±2.7% versus 56.3±3.8% with MPG; P <0.001), and DNP (15.7±2.7% versus 50.7±6.6% with MPG; P <0.001) but not CCPA (24.9±4.5% versus 26.5±8.4% with MPG; P =NS). Further experiments in adult rat myocytes demonstrated that diazoxide induced CsA-sensitive, low-conductance transient mPTP opening (represented by a 28±3% reduction in mitochondrial calcein fluorescence compared with control; P <0.01). Conclusions—We report that the protection associated with IPC, diazoxide, and mitochondrial uncoupling requires transient mPTP opening and ROS.


Physiology | 2008

Mitochondria : The Hub of Cellular Ca2+ Signaling

Michael R. Duchen

Mitochondria couple cellular metabolic state with Ca(2+) transport processes. They therefore control not only their own intra-organelle [Ca(2+)], but they also influence the entire cellular network of cellular Ca(2+) signaling, including the endoplasmic reticulum, the plasma membrane, and the nucleus. Through the detailed study of mitochondrial roles in Ca(2+) signaling, a remarkable picture of inter-organelle communication has emerged. We here review the ways in which this system provides integrity and flexibility for the cell to cope with the countless demands throughout its life cycle and discuss briefly the mechanisms through which it can also drive cell death.


Current Topics in Developmental Biology | 2007

The Role of Mitochondrial Function in the Oocyte and Embryo

Rémi Dumollard; Michael R. Duchen; John Carroll

Mitochondria have long been known to be the powerhouses of the cell but they also contribute to redox and Ca2+ homeostasis, provide intermediary metabolites and store proapoptotic factors. Mitochondria have a unique behavior during development. They are maternally transmitted with little (if any) paternal contribution, and they originate from a restricted founder population, which is amplified during oogenesis. Then, having established the full complement of mitochondria in the fully grown oocyte, there is no further increase of the mitochondrial population during early development. The localization of mitochondria in the egg during maturation and their segregation to blastomeres in the cleaving embryo are strictly regulated. Gradients in the distribution of mitochondria present in the egg have the potential to give rise to blastomeres receiving different numbers of mitochondria. Such maternally inherited differences in mitochondrial distribution are thought to play roles in defining the long-term viability of the blastomere in some cases and embryonic axes and patterning in others. Mitochondria may also regulate development by a number of other means, including modulating Ca2+ signaling, and the production of ATP, reactive oxygen species, and intermediary metabolites. If the participation of mitochondria in the regulation of sperm-triggered Ca2+ oscillations is now well established, the role of other properties of mitochondrial function during development remain largely unexplored probably due to the difficulty of accessing the mitochondrial compartment in an embryo. Maintaining a functional complement of maternally derived mitochondria is vital for the early embryo. Mitochondrial dysfunction may not only compromise developmental processes but also trigger apoptosis in the embryo. This dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated.


Circulation Research | 2007

Endothelial Mitochondria: Contributing to Vascular Function and Disease

Sean M. Davidson; Michael R. Duchen

Disturbances in vascular function contribute to the development of several diseases of increasing prevalence and thereby contribute significantly to human mortality and morbidity. Atherosclerosis, diabetes, heart failure, and ischemia with attendant reperfusion injury share many of the same risk factors, among the most important being oxidative stress and alterations in the blood concentrations of compounds that influence oxidative stress, such as oxidized low-density lipoprotein. In this review, we focus on endothelial cells: cells in the frontline against these disturbances. Because ATP supplies in endothelial cells are relatively independent of mitochondrial oxidative pathways, the mitochondria of endothelial cells have been somewhat neglected. However, they are emerging as agents with diverse roles in modulating the dynamics of intracellular calcium and the generation of reactive oxygen species and nitric oxide. The mitochondria may also constitute critical “targets” of oxidative stress, because survival of endothelial cells can be compromised by opening of the mitochondrial permeability transition pore or by mitochondrial pathways of apoptosis. In addition, evidence suggests that endothelial mitochondria may play a “reconnaissance” role. For example, although the exact mechanism remains obscure, endothelial mitochondria may sense levels of oxygen in the blood and relay this information to cardiac myocytes as well as modulating the vasodilatory response mediated by endothelial nitric oxide.


PLOS ONE | 2010

Maternal Diet-Induced Obesity Alters Mitochondrial Activity and Redox Status in Mouse Oocytes and Zygotes

Natalia Igosheva; Andrey Y. Abramov; Lucilla Poston; Judith J. Eckert; Tom P. Fleming; Michael R. Duchen; Josie McConnell

The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis. Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women.

Collaboration


Dive into the Michael R. Duchen's collaboration.

Top Co-Authors

Avatar

Andrey Y. Abramov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Derek M. Yellon

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. J. Biscoe

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Jake Jacobson

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mervyn Singer

University College London

View shared research outputs
Top Co-Authors

Avatar

Michael P. Murphy

MRC Mitochondrial Biology Unit

View shared research outputs
Researchain Logo
Decentralizing Knowledge