Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Logan is active.

Publication


Featured researches published by Michael R. Logan.


The Journal of Allergy and Clinical Immunology | 2003

Understanding exocytosis in immune and inflammatory cells: The molecular basis of mediator secretion

Michael R. Logan; Solomon O. Odemuyiwa; Redwan Moqbel

Inflammatory cells secrete proteins from intracellular vesicles or granules by a process referred to either as exocytosis or as degranulation, which is common to all cell types. Exocytosis is a precise term that describes the process of granule or vesicular fusion with the plasma membrane and is accompanied by release of granule/vesicle contents to the cell exterior. This process is of particular significance with respect to tissue damage and remodeling in inflammatory diseases, inasmuch as these changes are the consequences of inflammatory cell activation and mediator elaboration. Despite its unifying importance to all inflammatory cell types, little is known about the precise molecular and intracellular mechanisms that regulate mobilization of secretory granules/vesicles and, ultimately, secretion of mediators from immune and inflammatory cells. This article reviews the mechanisms and molecules currently implicated at distal stages of exocytosis from eosinophils, neutrophils, mast cells, platelets, and macrophages. Conserved molecules identified among inflammatory cell types indicate a convergence of pathways leading to mediator secretion. The identification of essential molecules in the cascade of events leading to exocytosis is critical in the search for novel therapeutic targets aimed at modulating mediator secretion from these cell types.


Allergy | 2006

A critical role for vesicle‐associated membrane protein‐7 in exocytosis from human eosinophils and neutrophils

Michael R. Logan; Paige Lacy; Solomon O. Odemuyiwa; M. Steward; Francis Davoine; H. Kita; Redwan Moqbel

Background:  Granulocyte exocytosis is proposed to be critically dependent on the interaction of soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs) located on granules/vesicles (v‐SNAREs) and plasma membrane (t‐SNAREs). Previous studies indicated that the v‐SNARE, vesicle‐associated membrane protein (VAMP)‐2, as well as t‐SNAREs (SNAP‐23, syntaxin‐4 and ‐6) are implicated in exocytosis from human granulocytes. Vesicle‐associated membrane proteins‐7 and ‐8 have been implicated in endosome/lysosome trafficking, however, their role in granulocyte exocytosis remains obscure.


American Journal of Physiology-cell Physiology | 2008

Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling

Troy Mitchell; Andrea Lo; Michael R. Logan; Paige Lacy; Gary Eitzen

The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.


Journal of Cell Biology | 2009

Myosin-driven peroxisome partitioning in S. cerevisiae

Andrei Fagarasanu; Fred D. Mast; Barbara Knoblach; Yui Jin; Matthew J. Brunner; Michael R. Logan; J. N. Mark Glover; Gary Eitzen; John D. Aitchison; Lois S. Weisman; Richard A. Rachubinski

In Saccharomyces cerevisiae, the class V myosin motor Myo2p propels the movement of most organelles. We recently identified Inp2p as the peroxisome-specific receptor for Myo2p. In this study, we delineate the region of Myo2p devoted to binding peroxisomes. Using mutants of Myo2p specifically impaired in peroxisome binding, we dissect cell cycle–dependent and peroxisome partitioning–dependent mechanisms of Inp2p regulation. We find that although total Inp2p levels oscillate with the cell cycle, Inp2p levels on individual peroxisomes are controlled by peroxisome inheritance, as Inp2p aberrantly accumulates and decorates all peroxisomes in mother cells when peroxisome partitioning is abolished. We also find that Inp2p is a phosphoprotein whose level of phosphorylation is coupled to the cell cycle irrespective of peroxisome positioning in the cell. Our findings demonstrate that both organelle positioning and cell cycle progression control the levels of organelle-specific receptors for molecular motors to ultimately achieve an equidistribution of compartments between mother and daughter cells.


Journal of Virology | 2014

Recombinant Hepatitis C Virus Envelope Glycoprotein Vaccine Elicits Antibodies Targeting Multiple Epitopes on the Envelope Glycoproteins Associated with Broad Cross-Neutralization

Jason Wong; Rakesh Bhat; Darren Hockman; Michael R. Logan; Chao Chen; Aviad Levin; Sharon E. Frey; Robert B. Belshe; D. L. Tyrrell; John Law; Michael Houghton

ABSTRACT Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection. Despite this, we have previously shown that a vaccine comprising recombinant envelope glycoproteins derived from a single genotype 1a strain was capable of eliciting a cross-neutralizing antibody response in human volunteers. Here, we have used competition binding assays and peptide binding assays to show that antibodies present in the antisera from vaccinated goats and humans bind epitopes overlapping with those of a variety of well-characterized cross-neutralizing monoclonal antibodies. This provides a mechanism for the cross-neutralizing human antisera: antibodies present in the antisera bind to conserved regions associated with cross-neutralization. Importantly, this work provides further support for a vaccine comprising recombinant envelope glycoproteins, perhaps in a formulation with a vaccine component eliciting strong anti-HCV CD4+ and CD8+ T cell responses.


PLOS ONE | 2011

No evidence for XMRV nucleic acids, infectious virus or anti-XMRV antibodies in Canadian patients with chronic fatigue syndrome.

Imke Steffen; D. Lorne Tyrrell; Eleanor Stein; Leilani Montalvo; Tzong-Hae Lee; Yanchen Zhou; Kai Lu; William M. Switzer; Hongwei Jia; Darren Hockman; Deanna M. Santer; Michael R. Logan; Amir Landi; John Law; Michael Houghton; Graham Simmons

The gammaretroviruses xenotropic murine leukemia virus (MLV)-related virus (XMRV) and MLV have been reported to be more prevalent in plasma and peripheral blood mononuclear cells of chronic fatigue syndrome (CFS) patients than in healthy controls. Here, we report the complex analysis of whole blood and plasma samples from 58 CFS patients and 57 controls from Canada for the presence of XMRV/MLV nucleic acids, infectious virus, and XMRV/MLV-specific antibodies. Multiple techniques were employed, including nested and qRT-PCR, cell culture, and immunoblotting. We found no evidence of XMRV or MLV in humans and conclude that CFS is not associated with these gammaretroviruses.


Journal of Biological Chemistry | 2016

Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus.

Donna N. Douglas; Christopher Hao Pu; Jamie Lewis; Rakesh Bhat; Anwar Anwar-Mohamed; Michael R. Logan; Garry Lund; William R. Addison; Richard Lehner; Norman M. Kneteman

Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis.


Biochemical and Biophysical Research Communications | 2010

Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion.

Michael R. Logan; Lynden Jones; Gary Eitzen

Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P(2) specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.


Journal of Biological Chemistry | 2010

Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming

Lynden Jones; Kelly Tedrick; Alicia Baier; Michael R. Logan; Gary Eitzen

Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP- or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.


Journal of Virology | 2017

Computational Prediction of the Heterodimeric and Higher-Order Structure of gpE1/gpE2 Envelope Glycoproteins Encoded by Hepatitis C Virus

Holly Freedman; Michael R. Logan; Darren Hockman; Julia Koehler Leman; John Law; Michael Houghton

ABSTRACT Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333–10346, 2015, https://doi.org/10.1128/JVI.00991-15 ). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies. IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C virus, and many more are at risk for infection. A better understanding of the structure of the HCV envelope, which is responsible for attachment and fusion, could aid in the development of a vaccine and/or new treatments for this disease. We draw upon computational techniques to predict a full-length model of the E1/E2 heterodimer based on the partial crystal structures of the envelope glycoproteins E1 and E2. E1/E2 has been widely studied experimentally, and this provides valuable data, which has assisted us in our modeling. Our proposed structure is used to suggest the organization of the HCV envelope. We also present new experimental data from size exclusion chromatography that support our computational prediction of a trimeric oligomeric state of E1/E2.

Collaboration


Dive into the Michael R. Logan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Law

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Chen

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge