Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. McDevitt is active.

Publication


Featured researches published by Michael R. McDevitt.


The Journal of Nuclear Medicine | 2007

Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes

Michael R. McDevitt; Debjit Chattopadhyay; Barry J. Kappel; Jaspreet Singh Jaggi; Scott R. Schiffman; Christophe Antczak; Jon T. Njardarson; Renier J. Brentjens; David A. Scheinberg

Single-walled carbon nanotubes (CNT) are mechanically robust graphene cylinders with a high aspect ratio that are comprised of sp2-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. We hypothesized that novel prototype nanostructures consisting of biologics, radionuclides, fluorochromes, and CNT could be synthesized and designed to target tumor cells. Methods: Tumor-targeting CNT constructs were synthesized from sidewall-functionalized, water-soluble CNT platforms by covalently attaching multiple copies of tumor-specific monoclonal antibodies, radiometal-ion chelates, and fluorescent probes. The constructs were characterized spectroscopically, chromatographically, and electrophoretically. The specific reactivity of these constructs was evaluated in vitro by flow cytometry and cell-based immunoreactivity assays and in vivo using biodistribution in a murine xenograft model of lymphoma. Results: A soluble, reactive CNT platform was used as the starting point to build multifunctional constructs with appended antibody, metal-ion chelate, and fluorescent chromophore moieties to effect specific targeting, to carry and deliver a radiometal-ion, and to report location, respectively. These nanoconstructs were found to be specifically reactive with the human cancer cells they were designed to target in vivo in a model of disseminated human lymphoma and in vitro by flow cytometry and cell-based immunoreactivity assays versus appropriate controls. Conclusion: The key achievement in these studies was the selective targeting of tumor in vitro and in vivo by the use of specific antibodies appended to a soluble, nanoscale CNT construct. The ability to specifically target tumor with prototype-radiolabeled or fluorescent-labeled, antibody-appended CNT constructs was encouraging and suggested further investigation of CNT as a novel delivery platform.


European Journal of Nuclear Medicine and Molecular Imaging | 1998

Radioimmunotherapy with alpha-emitting nuclides.

Michael R. McDevitt; George Sgouros; Ronald D. Finn; John L. Humm; Joseph G. Jurcic; Steven M. Larson; David A. Scheinberg

Abstract. This review discusses the application of alpha particle-emitting radionuclides in targeted radioimmunotherapy. It will outline the production and chemistry of astatine-211, bismuth-212, lead-212, actinium-225, bismuth-213, fermium-255, radium-223 and terbium-149, which at present are the most promising alpha-emitting isotopes available for human clinical use. The selective cytotoxicity offered by alpha particle-emitting radioimmunoconstructs is due to the high linear energy transfer and short particle path length of these radionuclides. Based upon the pharmacokinetics of alpha particle-emitting radioimmunoconstructs, both stochastic and conventional dosimetric methodology is discussed, as is the preclinical and initial clinical use of these radionuclides conjugated to monoclonal antibodies for the treatment of human neoplasia.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Paradoxical glomerular filtration of carbon nanotubes

Alessandro Ruggiero; Carlos H. Villa; Evan Bander; Diego A. Rey; Magnus Bergkvist; Carl A. Batt; Katia Manova-Todorova; William M. Deen; David A. Scheinberg; Michael R. McDevitt

The molecular weight cutoff for glomerular filtration is thought to be 30–50 kDa. Here we report rapid and efficient filtration of molecules 10–20 times that mass and a model for the mechanism of this filtration. We conducted multimodal imaging studies in mice to investigate renal clearance of a single-walled carbon nanotube (SWCNT) construct covalently appended with ligands allowing simultaneous dynamic positron emission tomography, near-infrared fluorescence imaging, and microscopy. These SWCNTs have a length distribution ranging from 100 to 500 nm. The average length was determined to be 200–300 nm, which would yield a functionalized construct with a molecular weight of ∼350–500 kDa. The construct was rapidly (t1/2 ∼ 6 min) renally cleared intact by glomerular filtration, with partial tubular reabsorption and transient translocation into the proximal tubular cell nuclei. Directional absorption was confirmed in vitro using polarized renal cells. Active secretion via transporters was not involved. Mathematical modeling of the rotational diffusivity showed the tendency of flow to orient SWCNTs of this size to allow clearance via the glomerular pores. Surprisingly, these results raise questions about the rules for renal filtration, given that these large molecules (with aspect ratios ranging from 100:1 to 500:1) were cleared similarly to small molecules. SWCNTs and other novel nanomaterials are being actively investigated for potential biomedical applications, and these observations—that high aspect ratio as well as large molecular size have an impact on glomerular filtration—will allow the design of novel nanoscale-based therapeutics with unusual pharmacologic characteristics.


PLOS ONE | 2007

PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice

Michael R. McDevitt; Debjit Chattopadhyay; Jaspreet Singh Jaggi; Ronald D. Finn; Pat Zanzonico; Carlos H. Villa; Diego A. Rey; Juana Mendenhall; Carl A. Batt; Jon T. Njardarson; David A. Scheinberg

Background The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT) are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp2-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 (86Y-CNT and 111In-CNT, respectively) in a mouse model. Methodology and Principal Findings The 86Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting 111In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET). The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intraveneous or intraperitoneal injection. Conclusions The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of 86Y-CNT were the kidney, liver, spleen, and to a much less extent the bone. Blood clearance was rapid and could be beneficial in the use of short-lived radionuclides in diagnostic applications.


Nature Reviews Clinical Oncology | 2010

Conscripts of the infinite armada: systemic cancer therapy using nanomaterials

David A. Scheinberg; Carlos H. Villa; Freddy E. Escorcia; Michael R. McDevitt

The field of clinical nanomaterials is enlarging steadily, with more than a billion US dollars of funding allocated to research by US government agencies in the past decade. The first generation of anti-cancer agents using novel nanomaterials has successfully entered widespread use. Newer nanomaterials are garnering increasing interest as potential multifunctional therapeutic agents; these drugs are conferred novel properties, by virtue of their size and shape. The new features of these agents could potentially allow increased cancer selectivity, changes in pharmacokinetics, amplification of cytotoxic effects, and simultaneous imaging capabilities. After attachment to cancer target reactive-ligands, which interact with cell-surface antigens or receptors, these new constructs can deliver cytolytic and imaging payloads. The molecules also introduce new challenges for drug development. While nanoscale molecules are of a similar size to proteins, the paradigms for how cells, tissues and organs of the body react to the non-biological materials are not well understood, because most cellular and metabolic processes have evolved to deal with globular, enzyme degradable molecules. We discuss examples of different materials to illustrate interesting principles for development and future applications of these nanomaterial medicines with emphasis on the possible pharmacologic and safety hurdles for accomplishing therapeutic goals.


The Journal of Nuclear Medicine | 2010

MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy

George Sgouros; John C. Roeske; Michael R. McDevitt; Stig Palm; Barry J. Allen; Darrell R. Fisher; A. Bertrand Brill; Hong Song; Roger W. Howell; Gamal Akabani; Wesley E. Bolch; Ruby F. Meredith; Barry W. Wessels; Pat Zanzonico

The potential of α-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of α-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with α-particle emitters. Although α-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted α-particle emitter therapy and to provide guidance and recommendations for human α-particle emitter dosimetry.


Clinical Cancer Research | 2010

Sequential Cytarabine and α-Particle Immunotherapy with Bismuth-213-Lintuzumab (HuM195) for Acute Myeloid Leukemia

Todd L. Rosenblat; Michael R. McDevitt; Deborah A. Mulford; Neeta Pandit-Taskar; Chaitanya R. Divgi; Katherine S. Panageas; Mark L. Heaney; Suzanne Chanel; Alfred Morgenstern; George Sgouros; Steven M. Larson; David A. Scheinberg; Joseph G. Jurcic

Purpose: Lintuzumab (HuM195), a humanized anti-CD33 antibody, targets myeloid leukemia cells and has modest single-agent activity against acute myeloid leukemia (AML). To increase the potency of the antibody without the nonspecific cytotoxicity associated with β-emitters, the α-particle–emitting radionuclide bismuth-213 (213Bi) was conjugated to lintuzumab. This phase I/II trial was conducted to determine the maximum tolerated dose (MTD) and antileukemic effects of 213Bi-lintuzumab, the first targeted α-emitter, after partially cytoreductive chemotherapy. Experimental Design: Thirty-one patients with newly diagnosed (n = 13) or relapsed/refractory (n = 18) AML (median age, 67 years; range, 37-80) were treated with cytarabine (200 mg/m2/d) for 5 days followed by 213Bi-lintuzumab (18.5-46.25 MBq/kg). Results: The MTD of 213Bi-lintuzumab was 37 MB/kg; myelosuppression lasting >35 days was dose limiting. Extramedullary toxicities were primarily limited to grade ≤2 events, including infusion-related reactions. Transient grade 3/4 liver function abnormalities were seen in five patients (16%). Treatment-related deaths occurred in 2 of 21 (10%) patients who received the MTD. Significant reductions in marrow blasts were seen at all dose levels. The median response duration was 6 months (range, 2-12). Biodistribution and pharmacokinetic studies suggested that saturation of available CD33 sites by 213Bi-lintuzumab was achieved after partial cytoreduction with cytarabine. Conclusions: Sequential administration of cytarabine and 213Bi-lintuzumab is tolerable and can produce remissions in patients with AML. Clin Cancer Res; 16(21); 5303–11. ©2010 AACR.


Applied Radiation and Isotopes | 2002

Design and synthesis of 225Ac radioimmunopharmaceuticals.

Michael R. McDevitt; Dangshe Ma; Jim Simon; R. Keith Frank; David A. Scheinberg

The alpha-particle-emitting radionuclides 213Bi, 211At, 224Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213Bi and 211At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224Ra chloride selectively seeks bone. 225Ac possesses favorable physical properties for radioimmunotherapy (10d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93+/-8% radiochemically pure (n=26). The second step yielded 225Ac-DOTA-IgG constructs that were 95+/-5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.


International Journal of Nanomedicine | 2010

Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes

Allessandro Ruggiero; Carlos H. Villa; Jason P. Holland; Shanna R. Sprinkle; Chad May; Jason S. Lewis; David A. Scheinberg; Michael R. McDevitt

Single wall carbon nanotube (SWCNT) constructs were covalently appended with radiometal-ion chelates (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA] or desferrioxamine B [DFO]) and the tumor neovascular-targeting antibody E4G10. The E4G10 antibody specifically targeted the monomeric vascular endothelial-cadherin (VE-cad) epitope expressed in the tumor angiogenic vessels. The construct specific activity and blood compartment clearance kinetics were significantly improved relative to corresponding antibodyalone constructs. We performed targeted radioimmunotherapy with a SWCNT-([225Ac]DOTA) (E4G10) construct directed at the tumor vasculature in a murine xenograft model of human colon adenocarcinoma (LS174T). The specific construct reduced tumor volume and improved median survival relative to controls. We also performed positron emission tomographic (PET) radioimmunoimaging of the tumor vessels with a SWCNT-([89Zr]DFO)(E4G10) construct in the same murine LS174T xenograft model and compared the results to appropriate controls. Dynamic and longitudinal PET imaging of LS174T tumor-bearing mice demonstrated rapid blood clearance (<1 hour) and specific tumor accumulation of the specific construct. Incorporation of the SWCNT scaffold into the construct design permitted us to amplify the specific activity to improve the signal-to-noise ratio without detrimentally impacting the immunoreactivity of the targeting antibody moiety. Furthermore, we were able to exploit the SWCNT pharmacokinetic (PK) profile to favorably alter the blood clearance and provide an advantage for rapid imaging. Near-infrared three-dimensional fluorescent-mediated tomography was used to image the LS174T tumor model, collect antibody-alone PK data, and calculate the number of copies of VE-cad epitope per cell. All of these studies were performed as a single administration of construct and were found to be safe and well tolerated by the murine model. These data have implications that support further imaging and radiotherapy studies using a SWCNT-based platform and focusing on the tumor vessels as the target.


Applied Radiation and Isotopes | 1999

An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation.

Michael R. McDevitt; Ronald D. Finn; George Sgouros; Dangshe Ma; David A. Scheinberg

A method for construction and operation of an 225Ac/213Bi generator capable of producing 25-100 mCi of 213Bi suitable for clinical antibody labeling is described. The generator has been designed to have an effective lifetime of several weeks, producing up to six therapeutic doses of radionuclide per day. To date, 57 clinical doses have been prepared and injected into patients using the described 213Bi generator. Factors such as radiation damage, radioprotection, iodide eluate chemistry, radiolabeling chemistry and radionuclide purity are addressed.

Collaboration


Dive into the Michael R. McDevitt's collaboration.

Top Co-Authors

Avatar

David A. Scheinberg

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

George Sgouros

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

David Scheinberg

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ronald D. Finn

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Steven M. Larson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dangshe Ma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carlos H. Villa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jaspreet Singh Jaggi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Simone Alidori

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge