Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Rusch is active.

Publication


Featured researches published by Michael Rusch.


Nature | 2012

The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

Jinghui Zhang; Li Ding; Linda Holmfeldt; Gang Wu; Susan L. Heatley; Debbie Payne-Turner; John Easton; Xiang Chen; Jianmin Wang; Michael Rusch; Charles Lu; Shann Ching Chen; Lei Wei; J. Racquel Collins-Underwood; Jing Ma; Kathryn G. Roberts; Stanley Pounds; Anatoly Ulyanov; Jared Becksfort; Pankaj Gupta; Robert Huether; Richard W. Kriwacki; Matthew Parker; Daniel J. McGoldrick; David Zhao; Daniel Alford; Stephen Espy; Kiran Chand Bobba; Guangchun Song; Deqing Pei

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.


The New England Journal of Medicine | 2014

Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia

Kathryn G. Roberts; Yongjin Li; Debbie Payne-Turner; Richard C. Harvey; Yung-Li Yang; Dehua Pei; Kelly McCastlain; Li Ding; C. Lu; Guangchun Song; Jing Ma; Jared Becksfort; Michael Rusch; Shann-Ching Chen; John Easton; Jinjun Cheng; Kristy Boggs; Natalia Santiago-Morales; Ilaria Iacobucci; Robert S. Fulton; Ji Wen; Marcus B. Valentine; Chieh-Lung Cheng; Steven W. Paugh; Meenakshi Devidas; I. M. Chen; S. Reshmi; Amy Smith; Erin Hedlund; Pankaj Gupta

BACKGROUND Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. METHODS We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL. We examined the functional effects of fusion proteins and the efficacy of tyrosine kinase inhibitors in mouse pre-B cells and xenografts of human Ph-like ALL. RESULTS Ph-like ALL increased in frequency from 10% among children with standard-risk ALL to 27% among young adults with ALL and was associated with a poor outcome. Kinase-activating alterations were identified in 91% of patients with Ph-like ALL; rearrangements involving ABL1, ABL2, CRLF2, CSF1R, EPOR, JAK2, NTRK3, PDGFRB, PTK2B, TSLP, or TYK2 and sequence mutations involving FLT3, IL7R, or SH2B3 were most common. Expression of ABL1, ABL2, CSF1R, JAK2, and PDGFRB fusions resulted in cytokine-independent proliferation and activation of phosphorylated STAT5. Cell lines and human leukemic cells expressing ABL1, ABL2, CSF1R, and PDGFRB fusions were sensitive in vitro to dasatinib, EPOR and JAK2 rearrangements were sensitive to ruxolitinib, and the ETV6-NTRK3 fusion was sensitive to crizotinib. CONCLUSIONS Ph-like ALL was found to be characterized by a range of genomic alterations that activate a limited number of signaling pathways, all of which may be amenable to inhibition with approved tyrosine kinase inhibitors. Trials identifying Ph-like ALL are needed to assess whether adding tyrosine kinase inhibitors to current therapy will improve the survival of patients with this type of leukemia. (Funded by the American Lebanese Syrian Associated Charities and others.).


Nature | 2012

Novel mutations target distinct subgroups of medulloblastoma

Giles W. Robinson; Matthew Parker; Tanya A. Kranenburg; Charles Lu; Xiang Chen; Li Ding; Timothy N. Phoenix; Erin Hedlund; Lei Wei; Xiaoyan Zhu; Nader Chalhoub; Suzanne J. Baker; Robert Huether; Richard W. Kriwacki; Natasha Curley; Radhika Thiruvenkatam; Jianmin Wang; Gang Wu; Michael Rusch; Xin Hong; Jared Becksfort; Pankaj Gupta; Jing Ma; John Easton; Bhavin Vadodaria; Arzu Onar-Thomas; Tong Lin; Shaoyi Li; Stanley Pounds; Steven W. Paugh

Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.


Nature Genetics | 2013

Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas

Junyuan Zhang; Gang Wu; Cp Miller; Ruth G. Tatevossian; James Dalton; Bo Tang; Wilda Orisme; Chandanamali Punchihewa; Michael W. Parker; Ibrahim Qaddoumi; F.A. Boop; Charles Lu; Cyriac Kandoth; Li Ding; Ryan Lee; Robert Huether; Xian Chen; Erin Hedlund; Panduka Nagahawatte; Michael Rusch; Kristy Boggs; Jinjun Cheng; Jared Becksfort; Jing Ma; Guangchun Song; Yongjin Li; Lei Wei; Jioajiao Wang; Sheila A. Shurtleff; John Easton

The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.


Nature Genetics | 2014

The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.

Gang Wu; Alexander K. Diaz; Barbara S. Paugh; Sherri Rankin; Bensheng Ju; Yongjin Li; Xiaoyan Zhu; Chunxu Qu; Xiang Chen; Junyuan Zhang; John Easton; Michael Edmonson; Xiaotu Ma; Charles Lu; Panduka Nagahawatte; Erin Hedlund; Michael Rusch; Stanley Pounds; Tong Lin; Arzu Onar-Thomas; Robert Huether; Richard W. Kriwacki; Matthew A. Parker; Pankaj Gupta; Jared Becksfort; Lei Wei; Heather L. Mulder; Kristy Boggs; Bhavin Vadodaria; Donald Yergeau

Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase–RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.


Nature Genetics | 2013

The genomic landscape of hypodiploid acute lymphoblastic leukemia

Linda Holmfeldt; Lei Wei; Ernesto Diaz-Flores; Michael D. Walsh; Jinghui Zhang; Li Ding; Debbie Payne-Turner; Michelle L. Churchman; Anna Andersson; Shann Ching Chen; Kelly McCastlain; Jared Becksfort; Jing Ma; Gang Wu; Samir N. Patel; Susan L. Heatley; Letha A. Phillips; Guangchun Song; John Easton; Matthew Parker; Xiang Chen; Michael Rusch; Kristy Boggs; Bhavin Vadodaria; Erin Hedlund; Christina D. Drenberg; Sharyn D. Baker; Deqing Pei; Cheng Cheng; Robert Huether

The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submicroscopic genetic alterations. Near-haploid ALL with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase signaling and Ras signaling (71%) and the lymphoid transcription factor gene IKZF3 (encoding AIOLOS; 13%). In contrast, low-hypodiploid ALL with 32–39 chromosomes are characterized by alterations in TP53 (91.2%) that are commonly present in nontumor cells, IKZF2 (encoding HELIOS; 53%) and RB1 (41%). Both near-haploid and low-hypodiploid leukemic cells show activation of Ras-signaling and phosphoinositide 3-kinase (PI3K)-signaling pathways and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.


Nature | 2012

A novel retinoblastoma therapy from genomic and epigenetic analyses

Jinghui Zhang; Claudia A. Benavente; Justina McEvoy; Jacqueline Flores-Otero; Li Ding; Xiang Chen; Anatoly Ulyanov; Gang Wu; Matthew W. Wilson; Jianmin Wang; Rachel Brennan; Michael Rusch; Amity L. Manning; Jing Ma; John Easton; Sheila A. Shurtleff; Charles G. Mullighan; Stanley Pounds; Suraj Mukatira; Pankaj Gupta; Geoff Neale; David Zhao; Charles Lu; Robert S. Fulton; Lucinda Fulton; Xin Hong; David J. Dooling; Kerri Ochoa; Clayton W. Naeve; Nicholas J. Dyson

Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.


The New England Journal of Medicine | 2015

Germline Mutations in Predisposition Genes in Pediatric Cancer

Jinghui Zhang; Michael F. Walsh; Gang Wu; Michael Edmonson; Tanja A. Gruber; John Easton; Dale J. Hedges; Xiaotu Ma; Xin Zhou; Donald Yergeau; Mark R. Wilkinson; Bhavin Vadodaria; Xiang Chen; Rose B. McGee; Stacy Hines-Dowell; Regina Nuccio; Emily Quinn; Sheila A. Shurtleff; Michael Rusch; Aman Patel; Jared Becksfort; Shuoguo Wang; Meaghann S. Weaver; Li Ding; Elaine R. Mardis; Richard Wilson; Amar Gajjar; David W. Ellison; Alberto S. Pappo; Ching-Hon Pui

BACKGROUND The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American Lebanese Syrian Associated Charities and the National Cancer Institute.).


Nature | 2014

C11orf95 – RELA fusions drive oncogenic NF-κB signalling in ependymoma

Matthew A. Parker; Kumarasamypet M. Mohankumar; Chandanamali Punchihewa; Ricardo Weinlich; James Dalton; Yongjin Li; Ryan Lee; Ruth G. Tatevossian; Timothy N. Phoenix; Radhika Thiruvenkatam; Elsie White; Bo Tang; Wilda Orisme; Kirti Gupta; Michael Rusch; Xiang Chen; Yuxin Li; Panduka Nagahawhatte; Erin Hedlund; David Finkelstein; Gang Wu; Sheila A. Shurtleff; John Easton; Kristy Boggs; Donald Yergeau; Bhavin Vadodaria; Heather L. Mulder; Jared Becksford; Pankaj Gupta; Robert Huether

Members of the nuclear factor-κB (NF-κB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-κB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-κB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-κB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95–RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95–RELA fusion proteins translocated spontaneously to the nucleus to activate NF-κB target genes, and rapidly transformed neural stem cells—the cell of origin of ependymoma—to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95–RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.


Cell Reports | 2014

Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.

Xiang Chen; Armita Bahrami; Alberto S. Pappo; John Easton; James Dalton; Erin Hedlund; David W. Ellison; Sheila A. Shurtleff; Gang Wu; Lei Wei; Matthew Parker; Michael Rusch; Panduka Nagahawatte; Jianrong Wu; Shenghua Mao; Kristy Boggs; Heather L. Mulder; Donald Yergeau; Charles Lu; Li Ding; Michael Edmonson; Chunxu Qu; Jianmin Wang; Yongjin Li; Fariba Navid; Najat C. Daw; Elaine R. Mardis; Richard K. Wilson; James R. Downing; Jinghui Zhang

Pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs) and copy number alterations (CNAs). To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue in a discovery cohort, as well as 14 samples in a validation cohort. Single-nucleotide variations (SNVs) exhibited a pattern of localized hypermutation called kataegis in 50% of the tumors. We identified p53 pathway lesions in all tumors in the discovery cohort, nine of which were translocations in the first intron of the TP53 gene. Beyond TP53, the RB1, ATRX, and DLG2 genes showed recurrent somatic alterations in 29%-53% of the tumors. These data highlight the power of whole-genome sequencing for identifying recurrent somatic alterations in cancer genomes that may be missed using other methods.

Collaboration


Dive into the Michael Rusch's collaboration.

Top Co-Authors

Avatar

John Easton

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jinghui Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Gang Wu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yongjin Li

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael Edmonson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiang Chen

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Pankaj Gupta

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

James R. Downing

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jing Ma

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jared Becksfort

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge