Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. A. Graziano is active.

Publication


Featured researches published by Michael S. A. Graziano.


Neuron | 2002

Complex Movements Evoked by Microstimulation of Precentral Cortex

Michael S. A. Graziano; Charlotte S. R. Taylor; Tirin Moore

Electrical microstimulation was used to study primary motor and premotor cortex in monkeys. Each stimulation train was 500 ms in duration, approximating the time scale of normal reaching and grasping movements and the time scale of the neuronal activity that normally accompanies movement. This stimulation on a behaviorally relevant time scale evoked coordinated, complex postures that involved many joints. For example, stimulation of one site caused the mouth to open and also caused the hand to shape into a grip posture and move to the mouth. Stimulation of this site always drove the joints toward this final posture, regardless of the direction of movement required to reach the posture. Stimulation of other cortical sites evoked different postures. Postures that involved the arm were arranged across cortex to form a map of hand positions around the body. This stimulation-evoked map encompassed both primary motor and the adjacent premotor cortex. We suggest that these regions fit together into a single map of the workspace around the body.


Neuropsychologia | 2006

Parieto-frontal interactions, personal space, and defensive behavior.

Michael S. A. Graziano; Dylan F. Cooke

In the monkey brain, two interconnected cortical areas have distinctive neuronal responses to visual, tactile, and auditory stimuli. These areas are the ventral intraparietal area (VIP) and a polysensory zone in the precentral gyrus (PZ). The multimodal neurons in these areas typically respond to objects touching, near, or looming toward the body surface. Electrical stimulation of these areas evokes defensive-like withdrawing or blocking movements. These areas have been suggested to participate in a range of functions including navigation by optic flow, attention to nearby space, and the processing of object location for the guidance of movement. We suggest that a major emphasis of these areas is the construction of a margin of safety around the body and the selection and coordination of defensive behavior. In this review, we summarize the physiological properties of these brain areas and discuss a range of behavioral phenomena that might be served by those neuronal properties, including the ducking and blocking reactions that follow startle, the flight zone of animals, the personal space of humans, the nearby, multimodal attentional space that has been studied in humans, the withdrawal reaction to looming visual stimuli, and the avoidance of obstacles during self-motion such as locomotion or reaching.


Current Opinion in Neurobiology | 1998

Spatial maps for the control of movement

Michael S. A. Graziano; Charles G. Gross

Neurons in the ventral premotor cortex of the monkey encode the locations of visual, tactile, auditory and remembered stimuli. Some of these neurons encode the locations of stimuli with respect to the arm, and may be useful for guiding movements of the arm. Others encode the locations of stimuli with respect to the head, and may be useful for guiding movements of the head. We suggest that a general principle of sensory-motor integration is that the space surrounding the body is represented in body-part-centered coordinates. That is, there are multiple coordinate systems used to guide movement, each one attached to a different part of the body. This and other recent evidence from both monkeys and humans suggest that the formation of spatial maps in the brain and the guidance of limb and body movements do not proceed in separate stages but are closely integrated in both the parietal and frontal lobes.


Neuron | 2002

The cortical control of movement revisited

Michael S. A. Graziano; Charlotte S. R. Taylor; Tirin Moore; Dylan F. Cooke

Recently, we found that electrical stimulation of motor cortex caused monkeys to make coordinated, complex movements. These evoked movements were arranged across the cortex in a map of spatial locations to which the hand moved. We suggest that some of the subdivisions previously described within primary motor and premotor cortex may represent different types of actions that monkeys tend to make in different regions of space. According to this view, primary and premotor cortex may fit together into a larger map of manual space.


Experimental Brain Research | 1993

A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields

Michael S. A. Graziano; Charles G. Gross

The macaque putamen contains neurons that respond to somatosensory stimuli such as light touch, joint movement, or deep muscle pressure. Their receptive fields are arranged to form a map of the body. In the face and arm region of this somatotopic map we found neurons that responded to visual stimuli. Some neurons were bimodal, responding to both visual and somatosensory stimuli, while others were purely visual, or purely somatosensory. The bimodal neurons usually responded to light cutaneous stimulation, rather than to joint movement or deep muscle pressure. They responded to visual stimuli near their tactile receptive field and were not selective for the shape or the color of the stimuli. For cells with tactile receptive fields on the face, the visual receptive field subtended a solid angle extending from the tactile receptive field to about 10 cm. For cells with tactile receptive fields on the arm, the visual receptive field often extended further from the animal. These bimodal properties provide a map of the visual space that immediately surrounds the monkey. The map is organized somatotopically, that is, by body part, rather than retinotopical ly as in most visual areas. It could function to guide movements in the animals immediate vicinity. Cortical areas 6, 7b, and VIP contain bimodal cells with very similar properties to those in the putamen. We suggest that the bimodal cells in area 6, 7b, VIP, and the putamen form part of an interconnected system that represents extrapersonal space in a somatotopic fashion.


Nature | 1999

A neuronal representation of the location of nearby sounds

Michael S. A. Graziano; Lina A. J. Reiss; Charles G. Gross

Humans can accurately perceive the location of a sound source—not only the direction, but also the distance. Sounds near the head, within ducking or reaching distance, have a special saliency. However, little is known about this perception of auditory distance. The direction to a sound source can be determined by interaural differences, and the mechanisms of direction perception have been studied intensively; but except for studies on echolocation in the bat, little is known about how neurons encode information on auditory distance. Here we describe neurons in the brain of macaque monkeys (Macaca fascicularis) that represent the auditory space surrounding the head, within roughly 30 cm. These neurons, which are located in the ventral premotor cortex, have spatial receptive fields that extend a limited distance outward from the head.


Neuron | 2007

Mapping Behavioral Repertoire onto the Cortex

Michael S. A. Graziano; Tyson N. Aflalo

A traditional view of the motor cortex in the primate brain is that it contains a map of the body arranged across the cortical surface. This traditional topographic scheme, however, does not capture the actual pattern of overlaps, fractures, re-representations, and multiple areas separated by fuzzy borders. Here, we suggest that the organization of the motor cortex, premotor cortex, supplementary motor cortex, frontal eye field, and supplementary eye field can in principle be understood as a best-fit rendering of the motor repertoire onto the two-dimensional cortical sheet in a manner that optimizes local continuity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Complex movements evoked by microstimulation of the ventral intraparietal area

Dylan F. Cooke; Charlotte S. R. Taylor; Tirin Moore; Michael S. A. Graziano

Most neurons in the ventral intraparietal area (VIP) of the macaque brain respond to both visual and tactile stimuli. The tactile receptive field is usually on the face, and the visual receptive field usually corresponds spatially to the tactile receptive field. In this study, electrical microstimulation of VIP, but not of surrounding tissue, caused a constellation of movements including eye closure, facial grimacing, head withdrawal, elevation of the shoulder, and movements of the hand to the space beside the head or shoulder. A similar set of movements was evoked by an air puff to the monkeys cheek. One interpretation is that VIP contributes to defensive movements triggered by stimuli on or near the head.


Journal of Neurophysiology | 2008

Complex Organization of Human Primary Motor Cortex: A High-Resolution fMRI Study

Jeffrey D. Meier; Tyson N. Aflalo; Sabine Kastner; Michael S. A. Graziano

A traditional view of the human motor cortex is that it contains an overlapping sequence of body part representations from the tongue in a ventral location to the foot in a dorsal location. In this study, high-resolution functional MRI (1.5x1.5x2 mm) was used to examine the somatotopic map in the lateral motor cortex of humans, to determine whether it followed the traditional somatotopic order or whether it contained any violations of that somatotopic order. The arm and hand representation had a complex organization in which the arm was relatively emphasized in two areas: one dorsal and the other ventral to a region that emphasized the fingers. This violation of a traditional somatotopic order suggests that the motor cortex is not merely a map of the body but is topographically shaped by other influences, perhaps including correlations in the use of body parts in the motor repertoire.


The Journal of Neuroscience | 2009

Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice.

Daniel A. Dombeck; Michael S. A. Graziano; David W. Tank

Macroscopic (millimeter scale) functional clustering is a hallmark characteristic of motor cortex spatial organization in awake behaving mammals; however, almost no information is known about the functional micro-organization (∼100 μm scale). Here, we optically recorded intracellular calcium transients of layer 2/3 neurons with cellular resolution over ∼200-μm-diameter fields in the forelimb motor cortex of mobile, head-restrained mice during two distinct movements (running and grooming). We showed that the temporal correlation between neurons was statistically larger the closer the neurons were to each other. We further explored this correlation by using two separate methods to spatially segment the neurons within each imaging field: K-means clustering and correlations between single neuron activity and mouse movements. The two methods segmented the neurons similarly and led to the conclusion that the origin of the inverse relationship between correlation and distance seen statistically was twofold: clusters of highly temporally correlated neurons were often spatially distinct from one another, and (even when the clusters were spatially intermingled) within the clusters, the more correlated the neurons were to each other, the shorter the distance between them. Our results represent a direct observation of functional clustering within the microcircuitry of the awake mouse motor cortex.

Collaboration


Dive into the Michael S. A. Graziano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan F. Cooke

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xintian Hu

Kunming Institute of Zoology

View shared research outputs
Researchain Logo
Decentralizing Knowledge