Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. German is active.

Publication


Featured researches published by Michael S. German.


Journal of Molecular Medicine | 1997

The β cell transcription factors and development of the pancreas

M. Sander; Michael S. German

Abstract The pancreatic β cell is the major source of circulating insulin in adult mammals. In the multistep process of insulin synthesis it is initiation of transcription that restricts insulin synthesis to the β cell since all subsequent steps can be performed by other cell types. Many of the transcription factors that bind to the insulin promoter and activate insulin gene transcription have been isolated. Some of these factors are restricted in their expression pattern, but so far no truly β cell-specific transcriptional activator has been found. Since different transcription factors synergize to activate insulin gene transcription, cell-specific transcription of insulin is probably realized through the interactions of a unique set of regulatory proteins in the β cell. The same transcription factors that regulate insulin gene transcription in the adult β cell are involved in determining cell differentiation during pancreatic development. The endocrine and exocrine pancreas form from the gut endoderm as a dorsal and a ventral bud which later fuse to build a single organ. The homeodomain protein PDX-1, an insulin gene transcription factor, is uniformly expressed in the early pancreatic bud, and null mutation of PDX-1 in mice results in a failure of the pancreatic bud to grow and differentiate. Other transcription factors, such as the helix-loop-helix protein Beta-2 and the homeodomain protein Nkx 6.1, show a restricted pattern of expression during embryogenesis and in the mature islet. Those proteins may serve a dual role for the organism: during embryogenesis they may determine islet cell differentiation and in the adult they may ensure tissue-specific expression of the islet cell hormones. A better understanding of the factors involved in insulin gene transcription and islet cell differentiation will ultimately provide the basis for novel therapy of diabetes.


Mechanisms of Development | 2003

Gene expression cascades in pancreatic development

Maria E. Wilson; David W. Scheel; Michael S. German

The specialized endocrine and exocrine cells of the pancreas originally derive from a pool of apparently identical cells in the early gut endoderm. Serial changes in their gene expression program, controlled by a hierarchy of pancreatic transcription factors, direct this progression from multipotent progenitor cell to mature pancreatic cell. When the cells differentiate, this hierarchy of factors coalesces into a network of factors that maintain the differentiated phenotype of the cells. As we develop an understanding of the pancreatic transcription factors, we are also acquiring the tools with which we can ultimately control pancreatic cell differentiation.


Nature Medicine | 2010

Serotonin regulates pancreatic beta cell mass during pregnancy

Hail Kim; Yukiko Toyofuku; Francis C. Lynn; Eric Chak; Toyoyoshi Uchida; Hirok i Mizukami; Yoshio Fujitani; Ryuzo Kawamori; Takeshi Miyatsuka; Yasuhiro Kosaka; Katherine Yang; Gerard Honig; Marieke van der Hart; Nina Kishimoto; Juehu Wang; Soroku Yagihashi; Laurence H. Tecott; Hirotaka Watada; Michael S. German

During pregnancy, the energy requirements of the fetus impose changes in maternal metabolism. Increasing insulin resistance in the mother maintains nutrient flow to the growing fetus, whereas prolactin and placental lactogen counterbalance this resistance and prevent maternal hyperglycemia by driving expansion of the maternal population of insulin-producing beta cells. However, the exact mechanisms by which the lactogenic hormones drive beta cell expansion remain uncertain. Here we show that serotonin acts downstream of lactogen signaling to stimulate beta cell proliferation. Expression of serotonin synthetic enzyme tryptophan hydroxylase-1 (Tph1) and serotonin production rose sharply in beta cells during pregnancy or after treatment with lactogens in vitro. Inhibition of serotonin synthesis by dietary tryptophan restriction or Tph inhibition blocked beta cell expansion and induced glucose intolerance in pregnant mice without affecting insulin sensitivity. Expression of the Gαq-linked serotonin receptor 5-hydroxytryptamine receptor-2b (Htr2b) in maternal islets increased during pregnancy and normalized just before parturition, whereas expression of the Gαi-linked receptor Htr1d increased at the end of pregnancy and postpartum. Blocking Htr2b signaling in pregnant mice also blocked beta cell expansion and caused glucose intolerance. These studies reveal an integrated signaling pathway linking beta cell mass to anticipated insulin need during pregnancy. Modulators of this pathway, including medications and diet, may affect the risk of gestational diabetes.


Diabetes | 2007

MicroRNA Expression is Required for Pancreatic Islet Cell Genesis in the Mouse

Francis C. Lynn; Peter Skewes-Cox; Yasuhiro Kosaka; Michael T. McManus; Brian D. Harfe; Michael S. German

OBJECTIVE—The generation of distinct cell types during the development of the pancreas depends on sequential changes in gene expression. We tested the hypothesis that microRNAs (miRNAs), which limit gene expression through posttranscriptional silencing, modulate the gene expression cascades involved in pancreas development. RESEARCH DESIGN AND METHODS—miRNAs were cloned and sequenced from developing pancreata, and expression of a subset of these genes was tested using locked nucleic acid in situ analyses. To assess the overall contribution of miRNAs to pancreatic development, Dicer1, an enzyme required for miRNA processing, was conditionally deleted from the developing pancreas. RESULTS—Sequencing of small RNAs identified over 125 miRNAs, including 18 novel sequences, with distinct expression domains within the developing pancreas. To test the developmental contribution of these miRNAs, we conditionally deleted the miRNA processing enzyme Dicer1 early in pancreas development. Dicer-null animals displayed gross defects in all pancreatic lineages, although the endocrine cells, and especially the insulin-producing β-cells, were most dramatically reduced. The endocrine defect was associated with an increase in the notch-signaling target Hes1 and a reduction in the formation of endocrine cell progenitors expressing the Hes1 target gene neurogenin3. CONCLUSIONS—The expression of a unique profile of miRNAs is required during pancreas development and is necessary for β-cell formation.


Developmental Biology | 2003

Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development.

Jacob Hald; J. Peter Hjorth; Michael S. German; Ole Madsen; Palle Serup; Jan Jensen

Mice carrying loss-of-function mutations in certain Notch pathway genes display increased and accelerated pancreatic endocrine development, leading to depletion of precursor cells followed by pancreatic hypoplasia. Here, we have investigated the effect of expressing a constitutively active form of the Notch1 receptor (Notch1(ICD)) in the developing pancreas using the pdx1 promoter. At e10.5 to e12.5, we observe a disorganized pancreatic epithelium with reduced numbers of endocrine cells, confirming a repressive activity of Notch1 upon the early differentiation program. Subsequent branching morphogenesis is impaired and the pancreatic epithelium forms cyst-like structures with ductal phenotype containing a few endocrine cells but completely devoid of acinar cells. The endocrine cells that do form show abnormal expression of cell type-specific markers. Our observations show that sustained Notch1 signaling not only significantly represses endocrine development, but also fully prevents pancreatic exocrine development, suggesting that a possible role of Notch1 is to maintain the undifferentiated state of common pancreatic precursor cells.


Nature | 2010

Rfx6 directs islet formation and insulin production in mice and humans

Stuart Smith; Hui Qi Qu; Nadine Taleb; Nina Kishimoto; David W. Scheel; Yang Lu; Ann Marie Patch; Rosemary Grabs; Juehu Wang; Francis C. Lynn; Takeshi Miyatsuka; John Mitchell; Rina Seerke; Julie Désir; Serge Vanden Eijnden; Marc Abramowicz; Nadine Kacet; Jacques Weill; Marie Éve Renard; Mattia Gentile; Inger Hansen; Ken Dewar; Andrew T. Hattersley; Rennian Wang; Maria E. Wilson; Jeffrey D. Johnson; Constantin Polychronakos; Michael S. German

Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes.


Molecular and Cellular Biology | 2000

The Homeodomain of PDX-1 Mediates Multiple Protein-Protein Interactions in the Formation of a Transcriptional Activation Complex on the Insulin Promoter

Kinuko Ohneda; Raghavendra G. Mirmira; Juehu Wang; Jeffrey D. Johnson; Michael S. German

ABSTRACT Activation of insulin gene transcription specifically in the pancreatic β cells depends on multiple nuclear proteins that interact with each other and with sequences on the insulin gene promoter to build a transcriptional activation complex. The homeodomain protein PDX-1 exemplifies such interactions by binding to the A3/4 region of the rat insulin I promoter and activating insulin gene transcription by cooperating with the basic-helix-loop-helix (bHLH) protein E47/Pan1, which binds to the adjacent E2 site. The present study provides evidence that the homeodomain of PDX-1 acts as a protein-protein interaction domain to recruit multiple proteins, including E47/Pan1, BETA2/NeuroD1, and high-mobility group protein I(Y), to an activation complex on the E2A3/4 minienhancer. The transcriptional activity of this complex results from the clustering of multiple activation domains capable of interacting with coactivators and the basal transcriptional machinery. These interactions are not common to all homeodomain proteins: the LIM homeodomain protein Lmx1.1 can also activate the E2A3/4 minienhancer in cooperation with E47/Pan1 but does so through different interactions. Cooperation between Lmx1.1 and E47/Pan1 results not only in the aggregation of multiple activation domains but also in the unmasking of a potent activation domain on E47/Pan1 that is normally silent in non-β cells. While more than one activation complex may be capable of activating insulin gene transcription through the E2A3/4 minienhancer, each is dependent on multiple specific interactions among a unique set of nuclear proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Sox9 coordinates a transcriptional network in pancreatic progenitor cells

Francis C. Lynn; Stewart B. Smith; Maria E. Wilson; Katherine Yang; Nada Nekrep; Michael S. German

During pancreas development, both the exocrine and endocrine lineages differentiate from a common pool of progenitor cells with similarities to mature pancreatic duct cells. A small set of transcription factors, including Tcf2, Onecut1, and Foxa2, has been identified in these pancreatic progenitor cells. The Sry/HMG box transcription factor Sox9 is also expressed in the early pancreatic epithelium and is required for normal pancreatic exocrine and endocrine development in humans. In this study, we found Sox9 in mice specifically expressed with the other progenitor transcription factors in both pancreatic progenitor cells and duct cells in the adult pancreas. Sox9 directly bound to all three genes in vitro and in intact cells, and regulated their expression. In turn, both Foxa2 and Tcf2 regulated Sox9 expression, demonstrating feedback circuits between these genes. Furthermore, Sox9 activated the expression of the proendocrine factor Neurogenin3, which also depends on the other members of the progenitor transcription network. These studies indicate that Sox9 plays a dual role in pancreatic progenitor cells: both maintaining a stable transcriptional network and supporting the programs by which these cells differentiate into distinct lineages.


Journal of Clinical Microbiology | 2005

Genotyping of Toxoplasma gondii Strains from Immunocompromised Patients Reveals High Prevalence of Type I Strains

Asis Khan; C. Su; Michael S. German; G. A. Storch; D. B. Clifford; L. David Sibley

ABSTRACT Toxoplasma gondii is an important food- and waterborne opportunistic pathogen that causes severe disease in immunocompromised patients. T. gondii has an unusual clonal population structure consisting of three widespread lineages known as I, II, and III. To establish the genotypes of strains of T. gondii associated with human toxoplasmosis, we have developed a set of four highly sensitive and polymorphic nested PCR markers. Multiplex nested PCR analysis was used to genotype parasites in cerebral spinal fluid samples from 8 of 10 human immunodeficiency virus-positive patients. Remarkably, a majority of these patients had infections with type I strains or strains containing type I alleles, despite the fact that this lineage is normally uncommon in humans and animals. Multiplex analysis of these four unlinked makers was able to distinguish all three common genotypes and also detected two strains with mixed genotypes. Further analysis based on sequencing of a polymorphic intron revealed that one of these recombinant strains was an exotic lineage distinct from the archetypal clonal lineages. The multiplex nested PCR analysis described here will be useful for analyzing the contribution of parasite genotype to toxoplasmosis.


Diabetes | 1995

The Insulin Gene Promoter: A Simplified Nomenclature

Michael S. German; Stephen J. H. Ashcroft; Kevin Docherty; Helena Edlund; Edlund T; Goodison S; Hiroo Imura; Kennedy G; Ole Madsen; Melloul D

The tools of molecular biology have rapidly expanded our knowledge of how β-cells regulate insulin gene expression. As this work has progressed in parallel in different laboratories, alternate nomenclature systems have been developed to describe the functionally important elements of the insulin gene. This jumble of names is confusing to those outside the field and intimidating to neophytes. Therefore, we have agreed to a simple, uniform set of names for the major insulin gene promoter elements.

Collaboration


Dive into the Michael S. German's collaboration.

Top Co-Authors

Avatar

Juehu Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis C. Lynn

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Stuart Smith

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Baeyens

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Kalamaras

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge