Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Glickman is active.

Publication


Featured researches published by Michael S. Glickman.


PLOS Pathogens | 2007

Mycobacterium tuberculosis nuoG Is a Virulence Gene That Inhibits Apoptosis of Infected Host Cells

Kamalakannan Velmurugan; Bing Chen; Jessica L. Miller; Sharon Azogue; Serdar Gurses; Tsungda Hsu; Michael S. Glickman; William R. Jacobs; Steven A. Porcelli; Volker Briken

The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.


Journal of Experimental Medicine | 2005

Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule

Vivek Rao; Nagatoshi Fujiwara; Steven A. Porcelli; Michael S. Glickman

Mycobacterium tuberculosis (Mtb) infection remains a global health crisis. Recent genetic evidence implicates specific cell envelope lipids in Mtb pathogenesis, but it is unclear whether these cell envelope compounds affect pathogenesis through a structural role in the cell wall or as pathogenesis effectors that interact directly with host cells. Here we show that cyclopropane modification of the Mtb cell envelope glycolipid trehalose dimycolate (TDM) is critical for Mtb growth during the first week of infection in mice. In addition, TDM modification by the cyclopropane synthase pcaA was both necessary and sufficient for proinflammatory activation of macrophages during early infection. Purified TDM isolated from a cyclopropane-deficient pcaA mutant was hypoinflammatory for macrophages and induced less severe granulomatous inflammation in mice, demonstrating that the fine structure of this glycolipid was critical to its proinflammatory activity. These results established the fine structure of lipids contained in the Mtb cell envelope as direct effectors of pathogenesis and identified temporal control of host immune activation through cyclopropane modification of TDM as a critical pathogenic strategy of Mtb.


Nature Reviews Urology | 2014

The mechanism of action of BCG therapy for bladder cancer—a current perspective

Gil Redelman-Sidi; Michael S. Glickman; Bernard H. Bochner

Bacillus Calmette–Guérin (BCG) has been used to treat non-muscle-invasive bladder cancer for more than 30 years. It is one of the most successful biotherapies for cancer in use. Despite long clinical experience with BCG, the mechanism of its therapeutic effect is still under investigation. Available evidence suggests that urothelial cells (including bladder cancer cells themselves) and cells of the immune system both have crucial roles in the therapeutic antitumour effect of BCG. The possible involvement of bladder cancer cells includes attachment and internalization of BCG, secretion of cytokines and chemokines, and presentation of BCG and/or cancer cell antigens to cells of the immune system. Immune system cell subsets that have potential roles in BCG therapy include CD4+ and CD8+ lymphocytes, natural killer cells, granulocytes, macrophages, and dendritic cells. Bladder cancer cells are killed through direct cytotoxicity by these cells, by secretion of soluble factors such as TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), and, to some degree, by the direct action of BCG. Several gaps still exist in our knowledge that should be addressed in future efforts to understand this biotherapy of cancer.


Journal of Clinical Investigation | 2006

Trans -cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis –induced inflammation and virulence

Vivek Rao; Feng Gao; Bing Chen; William R. Jacobs; Michael S. Glickman

Recent studies have shown that fine structural modifications of Mycobacterium tuberculosis cell envelope lipids mediate host cell immune activation during infection. One such alteration in lipid structure is cis-cyclopropane modification of the mycolic acids on trehalose dimycolate (TDM) mediated by proximal cyclopropane synthase of alpha mycolates (pcaA), a proinflammatory lipid modification during early infection. Here we examine the pathogenetic role and immunomodulatory function of mycolic acid cyclopropane stereochemistry by characterizing an M. tuberculosis cyclopropane-mycolic acid synthase 2 (cmaA2) null mutant (Delta cmaA2) that lacks trans-cyclopropanation of mycolic acids. Although titers of WT and Delta cmaA2 organisms were identical during mouse infection, Delta cmaA2 bacteria were hypervirulent while inducing larger granulomas than WT M. tuberculosis. The hypervirulence of the Delta cmaA2 strain depended on host TNF-alpha and IFN-gamma. Loss of trans-cyclopropanation enhanced M. tuberculosis-induced macrophage inflammatory responses, a phenotype that was transferable with petroleum ether extractable lipids. Finally, purified TDM lacking trans-cyclopropane rings was 5-fold more potent in stimulating macrophages. These results establish cmaA2-dependent trans-cyclopropanation of TDM as a suppressor of M. tuberculosis-induced inflammation and virulence. In addition, cyclopropane stereochemistries on mycolic acids interact directly with host cells to both positively and negatively influence host innate immune activation.


Nature Reviews Microbiology | 2007

Bacterial DNA repair by non-homologous end joining

Stewart Shuman; Michael S. Glickman

The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.


Nature Structural & Molecular Biology | 2005

Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C

Chunling Gong; Paola Bongiorno; Alexandra Martins; Nicolas C. Stephanou; Hui Zhu; Stewart Shuman; Michael S. Glickman

DNA double-strand breaks (DSBs) can be repaired either via homologous recombination (HR) or nonhomologous end-joining (NHEJ). Both pathways are operative in eukaryotes, but bacteria had been thought to rely on HR alone. Here we provide direct evidence that mycobacteria have a robust NHEJ pathway that requires Ku and a specialized polyfunctional ATP-dependent DNA ligase (LigD). NHEJ of blunt-end and complementary 5′-overhang DSBs is highly mutagenic (∼50% error rate). Analysis of the recombination junctions ensuing from individual NHEJ events highlighted the participation of several DNA end-remodeling activities, including template-dependent fill-in of 5′ overhangs, nontemplated addition of single nucleotides at blunt ends, and nucleolytic resection. LigD itself has the template-dependent and template-independent polymerase functions in vitro that compose the molecular signatures of NHEJ in vivo. Another ATP-dependent DNA ligase (LigC) provides a backup mechanism for LigD-independent error-prone repair of blunt-end DSBs. We speculate that NHEJ allows mycobacteria to evade genotoxic host defense.


Journal of Experimental Medicine | 2008

Delayed protection by ESAT-6–specific effector CD4+ T cells after airborne M. tuberculosis infection

Alena M. Gallegos; Eric G. Pamer; Michael S. Glickman

Mycobacterium tuberculosis infection induces complex CD4 T cell responses that include T helper type 1 (Th1) cells and regulatory T cells. Although Th1 cells control infection, they are unable to fully eliminate M. tuberculosis, suggesting that Th1-mediated immunity is restrained from its full sterilizing potential. Investigation into T cell–mediated defense is hindered by difficulties in expanding M. tuberculosis–specific T cells. To circumvent this problem, we cloned CD4+ T cells from M. tuberculosis–infected B6 mice and generated transgenic mice expressing a T cell receptor specific for the immunodominant antigen early secreted antigenic target 6 (ESAT-6). Adoptively transferred naive ESAT-6–specific CD4+ T cells are activated in pulmonary lymph nodes between 7 and 10 d after aerosol infection and undergo robust expansion before trafficking to the lung. Adoptive transfer of activated ESAT-6–specific Th1 cells into naive recipients before aerosol M. tuberculosis infection dramatically enhances resistance, resulting in 100-fold fewer bacteria in infected lungs. However, despite large numbers of Th1 cells in the lungs of mice at the time of M. tuberculosis challenge, protection was not manifested until after 7 d following infection. Our results demonstrate that pathogen-specific Th1 cells can provide protection against inhaled M. tuberculosis, but only after the first week of infection.


Cell | 2009

CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence.

Christina L. Stallings; Nicolas C. Stephanou; Linda Chu; Ann Hochschild; Bryce E. Nickels; Michael S. Glickman

Mycobacterium tuberculosis is arguably the worlds most successful infectious agent because of its ability to control its own cell growth within the host. Bacterial growth rate is closely coupled to rRNA transcription, which in E. coli is regulated through DksA and (p)ppGpp. The mechanisms of rRNA transcriptional control in mycobacteria, which lack DksA, are undefined. Here we identify CarD as an essential mycobacterial protein that controls rRNA transcription. Loss of CarD is lethal for mycobacteria in culture and during infection of mice. CarD depletion leads to sensitivity to killing by oxidative stress, starvation, and DNA damage, accompanied by failure to reduce rRNA transcription. CarD can functionally replace DksA for stringent control of rRNA transcription, even though CarD associates with a different site on RNA polymerase. These findings highlight a distinct molecular mechanism for regulating rRNA transcription in mycobacteria that is critical for M. tuberculosis pathogenesis.


PLOS Pathogens | 2011

A Gamma Interferon Independent Mechanism of CD4 T Cell Mediated Control of M. tuberculosis Infection in vivo

Alena M. Gallegos; Jeroen W J van Heijst; Miriam Samstein; Xiaodi Su; Eric G. Pamer; Michael S. Glickman

CD4 T cell deficiency or defective IFNγ signaling render humans and mice highly susceptible to Mycobacterium tuberculosis (Mtb) infection. The prevailing model is that Th1 CD4 T cells produce IFNγ to activate bactericidal effector mechanisms of infected macrophages. Here we test this model by directly interrogating the effector functions of Th1 CD4 T cells required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of IFNγ or TNF and does not require the perforin or FAS effector pathways. Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a previously unrecognized IFNγ/TNF independent pathway that efficiently controls Mtb and suggest that optimization of this alternative effector function may provide new therapeutic avenues to combat Mtb through vaccination.


Nature | 2005

Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis

Hideki Makinoshima; Michael S. Glickman

Mycobacterium tuberculosis infection is a continuing global health crisis that kills 2 million people each year. Although the structurally diverse lipids of the M. tuberculosis cell envelope each have non-redundant roles in virulence or persistence, the molecular mechanisms regulating cell envelope composition in M. tuberculosis are undefined. In higher eukaryotes, membrane composition is controlled by site two protease (S2P)-mediated cleavage of sterol regulatory element binding proteins, membrane-bound transcription factors that control lipid biosynthesis. S2P is the founding member of a widely distributed family of membrane metalloproteases that cleave substrate proteins within transmembrane segments. Here we show that a previously uncharacterized M. tuberculosis S2P homologue (Rv2869c) regulates M. tuberculosis cell envelope composition, growth in vivo and persistence in vivo. These results establish that regulated intramembrane proteolysis is a conserved mechanism controlling membrane composition in prokaryotes and show that this proteolysis is a proximal regulator of cell envelope virulence determinants in M. tuberculosis.

Collaboration


Dive into the Michael S. Glickman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina L. Stallings

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel Barkan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Richa Gupta

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Allison Fay

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gil Redelman-Sidi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric G. Pamer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas C. Stephanou

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Charles Kyriakos Vorkas

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge