Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Kilberg is active.

Publication


Featured researches published by Michael S. Kilberg.


Nature Cell Biology | 2013

ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death

Jaeseok Han; Sung Hoon Back; Junguk Hur; Yu Hsuan Lin; Robert D. Gildersleeve; Jixiu Shan; Celvie L. Yuan; Dawid Krokowski; Shiyu Wang; Maria Hatzoglou; Michael S. Kilberg; Maureen A. Sartor; Randal J. Kaufman

Protein misfolding in the endoplasmic reticulum (ER) leads to cell death through PERK-mediated phosphorylation of eIF2α, although the mechanism is not understood. ChIP-seq and mRNA-seq of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), key transcription factors downstream of p-eIF2α, demonstrated that they interact to directly induce genes encoding protein synthesis and the unfolded protein response, but not apoptosis. Forced expression of ATF4 and CHOP increased protein synthesis and caused ATP depletion, oxidative stress and cell death. The increased protein synthesis and oxidative stress were necessary signals for cell death. We show that eIF2α-phosphorylation-attenuated protein synthesis, and not Atf4 mRNA translation, promotes cell survival. These results show that transcriptional induction through ATF4 and CHOP increases protein synthesis leading to oxidative stress and cell death. The findings suggest that limiting protein synthesis will be therapeutic for diseases caused by protein misfolding in the ER.


Journal of Biological Chemistry | 1997

A CAVEOLAR COMPLEX BETWEEN THE CATIONIC AMINO ACID TRANSPORTER 1 AND ENDOTHELIAL NITRIC-OXIDE SYNTHASE MAY EXPLAIN THE ARGININE PARADOX

Kelly K. McDonald; Sergei Zharikov; Edward R. Block; Michael S. Kilberg

Immunohistochemistry of porcine pulmonary artery endothelial cells (PAEC) with antibodies specific for caveolin, endothelial nitric-oxide synthase (eNOS), and the arginine transporter (CAT1) demonstrates that all of these proteins co-localize in plasma membrane caveolae. When incubated with solubilized PAEC plasma membrane proteins, eNOS-specific antibody immunoprecipitates CAT1-mediated arginine transport. These results document the existence of a caveolar complex between CAT1 and eNOS in PAEC that provides a mechanism for the directed delivery of substrate arginine to eNOS. Direct transfer of extracellular arginine to membrane-bound eNOS accounts for the “arginine paradox” and explains why caveolar localization of eNOS is required for optimal nitric oxide production by endothelial cells.


Biochimica et Biophysica Acta | 1983

The regulation of neutral amino acid transport in mammalian cells

Mark A. Shotwell; Michael S. Kilberg; Dale L. Oxender

II1. Regu la t ion of t r anspor t ac t iv i ty by amino acid avai lab i l i ty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 A, Regula t ion of System A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 B. Regula t ion of System L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 1. Kinet ic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 2. Gene t i c approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 C, Regula t ion of System N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272


Trends in Endocrinology and Metabolism | 2009

ATF4-dependent transcription mediates signaling of amino acid limitation.

Michael S. Kilberg; Jixiu Shan; Nan Su

Mammals respond to dietary nutrient fluctuations; for example, deficiency of dietary protein or an imbalance of essential amino acids activates an amino acid response (AAR) signal transduction pathway, consisting of detection of uncharged tRNA by the GCN2 kinase, eIF2alpha phosphorylation and ATF4 expression. In concert with heterodimerization partners, ATF4 activates specific genes via a CCAAT-enhancer binding protein-activating transcription factor response element (CARE). This review outlines the ATF4-dependent transcriptional mechanisms associated with the AAR, focusing on progress during the past 5 years. Recent evidence suggests that maternal nutrient deprivation not only has immediate metabolic effects on the fetus, but also triggers gene expression changes in adulthood, possibly through epigenetic mechanisms. Therefore, understanding the transcriptional programs initiated by amino acid limitation is crucial and timely.


The Journal of Membrane Biology | 1982

Amino acid transport in isolated rat hepatocytes

Michael S. Kilberg

SummaryImprovements in the collagenase perfusion techniques have made isolated rat hepatocytes a popular model in which to study hepatic function. Our knowledge of hepatic amino acid transport has been advanced as a result of this methodology. Translocation across the hepatocyte plasma membrane can, in some instances, represent the rate-limiting step in the overall metabolism of certain amino acids. Furthermore, regulation of amino acid uptake by hepatocytes appears to play a role in diabetes, and perhaps in malignant transformation. Comparisons between normal adult hepatocytes and several hepatoma cell lines show basic differences in amino acids transport. There are at least eight distinct systems in normal hepatocytes for transport of the amino acids. One of these, System A, transports the small neutral amino acids most efficiently and responds to a wide variety of hormones. Systems A and N exhibit enhanced uptake rates after the cells have been maintained in the absence of extracellular amino acids, a phenomenon termed adaptive control. Further studies using isolated hepatocytes will increase our basic understanding of membrane transport processes and their regulation.


Journal of Biological Chemistry | 1993

Cloning and expression of a novel Na+-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters

Saad Shafqat; Balaji K. Tamarappoo; Michael S. Kilberg; Ram S. Puranam; James O McNamara; Ana Guadaño-Ferraz; Robert T. Fremeau

This work was supported by Community of Madrid (Grupo Estrategico 2000-2003), NIH, grant R01CA77575, and SAF 2001-2245.The transition step from the p3-dAMP initiation complex to the first elongated products, p3-(dAMP)2 and p3-(dAMP)3, requires a dATP concentration higher than that needed for the initiation reaction or for the further elongation of the p3-(dAMP)3 complex. The elongation in phi 29 DNA-protein p3 replication in vitro was strongly inhibited by salt. Under inhibitory salt concentration, the viral protein p6 greatly stimulated phi 29 DNA-protein p3 replication. The effect of protein p6 was not on the rate of elongation but on the amount of elongated product, stimulating the transition from initiation to formation of the first elongation products.Trabajo presentado en 44th Annual Meeting Society for Neuroscience, celebrado en Washington, DC (USA) del 15 al 19 de noviembre de 2014Recent studies have demonstrated that cytochrome c plays an important role in cell death. In the present study, we report that teniposide and various other chemotherapeutic agents induced a dose-dependent increase in the expression of the mitochondrial respiratory chain proteins cytochrome c, subunits I and IV of cytochrome c oxidase, and the free radical scavenging enzyme manganous superoxide dismutase. The teniposide-induced increase of cytochrome c was inhibited by cycloheximide, indicating new protein synthesis. Elevated cytochrome c levels were associated with enhanced cytochrome c oxidase-dependent oxygen uptake using TMPD/ascorbate as the electron donor, suggesting that the newly synthesized proteins were functional. Cytochrome c was released into the cytoplasm only after maximal levels had been reached in the mitochondria, but there was no concomitant decrease in mitochondrial membrane potential or caspase activation. Our results suggest that the increase in mitochondrial protein expression may play a role in the early cellular defense against anticancer drugs.Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.The results presented in this paper indicate that the phi 29 DNA polymerase is the only enzyme required for efficient synthesis of full length phi 29 DNA with the phi 29 terminal protein, the initiation primer, as the only additional protein requirement. Analysis of phi 29 DNA polymerase activity in various in vitro DNA replication systems indicates that two main reasons are responsible for the efficiency of this minimal system: 1) the phi 29 DNA polymerase is highly processive in the absence of any accessory protein; 2) the polymerase itself is able to produce strand displacement coupled to the polymerization process. Using primed M13 DNA as template, the phi 29 DNA polymerase is able to synthesize DNA chains greater than 70 kilobase pairs. Furthermore, conditions that increase the stability of secondary structure in the template do not affect the processivity and strand displacement ability of the enzyme. Thus, the catalytic properties of the phi 29 DNA polymerase are appropriate for a phi 29 DNA replication mechanism involving two replication origins, strand displacement and continuous synthesis of both strands. The enzymology of phi 29 DNA replication would support a symmetrical model of DNA replication.Aided by grants from the National Institutes of Health U.S. Public Health Service, and E. I. Du Pont de Neumours and Company, Inc.This work was supported in part by NRSA, National Institutes of Health Grants NS09463 and NS32501 and from National Science Foundation Grant 9310965.We have recently developed a new method to detect and characterize single base substitutions in transcribed genes which is based on the ability of RNAse A to recognize and cleave single base mismatches in RNA:RNA heteroduplexes. The RNAse A misrnatch cleavage assay was applied to screen human colon carcinoma cell lines and primary tumors for the presence of mutant e-X-ras oncogenes. We have determined that the mutant e-X-ras allele is overexpressed and amplified relative to the normal in the SX-CO-l human colon carcinoma cell lineo The oncogene mutation has been characterized by this method as a glycine to valine substitution at codon 12 of the e-X-ras gene. This result was confirmed by cloning and sequencing. We have previously reported that about 40% of primary human colon tumors contain e-X-ras genes mutant at codon 12 (Forrester et al, Nature 327: 298, 1987). We report here the characterization by molecular cloning and sequencing of the mutation in the e-X-ras oneogene from two of these tumors (tumors 3 and 28). We also describe the histopathologieal eharaeterization of these two tumors and demonstrate, by Southern blot hybridization of NIH3T3 transformants, the simultaneous presenee of mutant e-X-ras and N-ras oncogenes in villous adenoma 28. Our results provide evidence for the frequent assoeiation of ras somatie mutational aetivation in the early stages of tumor development in this common type of human eaneer.Aided by Grants AM-01845, AM-08953, and l-Sol-FR-05099 from the National Institutes o f Health, United States Public Health Service, and E. I. Du Pont de Nemours and Company, Inc. A preliminary report o f this work was presented at the Second Meeting o f the Federation o f European Biochemical Societies (symposium on “Ribonucleic Acid-Structure and Function”), Vienna, April 21 to 24, 1965.1 pagina.-- Trabajo presentado al: 4th International Meeting on Apicomplexa in Farm Animals. (Madrid, Spain. 11-14 October ,2017).Supported by Grant GM-08041 from the National Institutes of Health, United States Public Health Service.Resumen del trabajo presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.This article describes the expression pattern and functional analysis of Lazarillo, a novel cell surface glycoprotein expressed in the embryonic grasshopper nervous system, and a member of the lipocalin family. Lazarillo is expressed by a subset of neuroblasts, ganglion mother cells and neurons of the central nervous system, by all sensory neurons of the peripheral nervous system, and by a subset of neurons of the enteric nervous system. It is also present in a few non neuronal cells associated mainly with the excretory system. A monoclonal antibody raised against Lazarillo perturbs the extent and direction of growth of identified commissural pioneer neurons. We propose that Lazarillo is the receptor for a midline morphogen involved in the outgrowth and guidance of these neurons.Poster presentado al Annual Biomedical Research Conference for Minority Students celebrado en California (US) del 7 al 10 de noviembre de 2012.The phage phi 29 regulatory protein p4 activates the late promoter A3 by stabilizing the binding of Bacillus subtilis RNA polymerase (RNAP) as a closed complex. Interaction between the two proteins occurs through amino acid Arg120 in protein p4 and the C-terminal domain of the RNAP alpha subunit (alpha-CTD). In addition to its role as activator of the late transcription, protein p4 represses early transcription from the A2b and A2c promoters, that are divergently transcribed. Binding of p4 to its recognition site at the A3 promoter displaces the RNAP from promoter A2b, both by steric hindrance and by the curvature induced upon p4 binding. At the A2c promoter, the RNAP cooperates with p4 binding in such a way that promoter clearance is prevented. Interestingly, amino acid Arg120 in p4 and the alpha-CTD in B. subtilis RNAP are involved in the interactions that lead to transcription repression at promoter A2c. To investigate how this interaction leads to activation at PA3 and to repression at PA2c, mutant promoters were constructed. In the absence of a -35 consensus box for sigma A-RNAP activation was observed, while in its presence repression occurred. The results support the idea that overstabilization of RNAP at the promoter over a threshold level leads to repression.Resumen del poster presentado al XXXIII Congreso de la Sociedad Espanola de Bioquimica y Biologia Molecular celebrado en Cordoba del 14 al 17 de septiembre de 2010.Formalin-fixed paraffin-embedded tissue specimens obtained by fine needle aspiration of pancreatic masses from 47 patients were examined retrospectively for cytology and the presence of mutant c-K-ras oncogenes. Point mutations of c-K-ras in codon 12 were detected by RNA-DNA RNAse A mismatch cleavage after in vitro DNA amplification of the cellular c-K-ras sequences by the polymerase chain reaction. Of the 36 patients with pancreatic adenocarcinoma, mutant c-K-ras oncogenes were detected in 18 of 25 (72%) with malignant cytologies, 2 of 8 (25%) with atypical cytologies, and 0 of 3 with benign aspiration cytologies. The remaining 11 patients without pancreatic adenocarcinomas did not have mutant c-K-ras genes detectable by the assay. The diagnosis of pancreatic adenocarcinoma was based upon clinical follow-up. The presence of mutant c-K-ras oncogenes did not significantly affect survival in the patients studied. Mutant c-K-ras genes were found at the time of initial clinical presentation in the majority of pancreatic adenocarcinomas, suggesting an important role of the mutation in oncogenesis. In conjunction with cytology, our approach represents an application for cancer diagnosis at the molecular genetic level.Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.To investigate the relationship between RNA folding and ribozyme catalysis, we have carried out a detailed kinetic analysis of four structural derivatives of the hairpin ribozyme. Optimal and suboptimal (wild-type) substrate sequences were studied in conjunction with stabilization of helix 4, which supports formation of the catalytic core. Pre-steady-state and steady-state kinetic studies strongly support a model in which each of the ribozyme variants partitions between two major conformations leading to active and inactive ribozymez substrate complexes. Reaction rates for cleavage, ligation, and substrate binding to both ribozyme conformations were determined. Ligation rates (3 min 21 ) were typically 15-fold greater than cleavage rates (0.2 min 21 ), demonstrating that the hairpin ribozyme is an efficient RNA ligase. On the other hand, substrate binding is very rapid (k on 5 4 3 10 8 M 21 min 21 ), and the ribozymez substrate complex is very stable (K D < 25 pM ;k off < 0.01 min 21 ). Stabilization of helix 4 increases the proportion of RNA molecules folded into the active conformation, and enhances substrate association and ligation rates. These effects can be explained by stabilization of the catalytic core of the ribozyme. Rigorous consideration of conformational isomers and their intrinsic kinetic properties was necessary for development of a kinetic scheme for the ribozyme-catalyzed reaction.The human integrin VLA (very late activation antigens)-4 (CD49d/CD29), the leukocyte receptor for both the CS-1 region of plasma fibronectin (Fn) and the vascular cell surface adhesion molecule-1 (VCAM-1), also mediates homotypic aggregation upon triggering with specific anti-VLA-4 monoclonal antibody (mAb). Epitope mapping of this integrin on the human B-cell line Ramos, performed with a wide panel of anti-VLA-4 mAb by both cross-competitive cell binding and protease sensitivity assays, revealed the existence of three topographically distinct epitopes on the alpha 4 chain, referred to as epitopes A-C. By testing this panel of anti-VLA-4 mAb for inhibition of cell binding to both a 38-kDa Fn fragment containing CS-1 and to VCAM-1, as well as for induction and inhibition of VLA-4 mediated homotypic cell adhesion, we have found overlapping but different functional properties associated with each epitope. Anti-alpha 4 mAb recognizing epitope B inhibited cell attachment to both Fn and VCAM-1, whereas mAb against epitope A did not block VCAM-1 binding and only partially inhibited binding to Fn. In contrast, mAb directed to epitope C did not affect cell adhesion to either of the two VLA-4 ligands. All mAb directed to site A, as well as a subgroup of mAb recognizing epitope B (called B2), were able to induce cell aggregation, but this effect was not exerted by mAb specific to site C and by a subgroup against epitope B (called B1). Moreover, although anti-epitope C and anti-epitope B1 mAb did not trigger aggregation, those mAb blocked aggregation induced by anti-epitope A or B2 mAb. In addition, anti-epitope A mAb blocked B2-induced aggregation, and conversely, anti-epitope B2 mAb blocked A-induced aggregation. Further evidence for multiple VLA-4 functions is that anti-Fn and anti-VCAM-1 antibodies inhibited binding to Fn or to VCAM-1, respectively, but did not affect VLA-4-mediated aggregation. In summary, we have demonstrated that there are at least three different VLA-4-mediated adhesion functions, we have defined three distinct VLA-4 epitopes, and we have correlated these epitopes with the different functions of VLA-4.Lazarillo, a protein recognized by the monoclonal antibody 10E6, is expressed by a subset of neurons in the developing nervous system of the grasshopper. It is a glycoprotein of 45x10(3) M(r) with internal disulfide bonds and linked to the extracellular side of the plasma membrane by a glycosylphosphatidylinositol moiety. Peptide sequences obtained from affinity purified adult protein were used to identify an embryonic cDNA clone, and in situ hybridizations confirmed that the distribution of the Lazarillo mRNA paralleled that of the monoclonal antibody labeling on embryos. Sequence analysis defines Lazarillo as a member of the lipocalin family, extracellular carriers of small hydrophobic ligands, and most related to the porphyrin- and retinol-binding lipocalins. Lazarillo is the first example of a lipocalin anchored to the plasma membrane, highly glycosylated, and restricted to a subset of developing neurons.Trabajo presentado al Annual Biomedical Research Conference for Minority Students celebrada en Nashville (US) del 13 al 16 de noviembre de 2013.A cDNA has been isolated from human hippocampus that appears to encode a novel Na(+)-dependent, Cl(-)-independent, neutral amino acid transporter. The putative protein, designated SATT, is 529 amino acids long and exhibits significant amino acid sequence identity (39-44%) with mammalian L-glutamate transporters. Expression of SATT cDNA in HeLa cells induced stereospecific uptake of L-serine, L-alanine, and L-threonine that was not inhibited by excess (3 mM) 2-(methylamino)-isobutyric acid, a specific substrate for the System A amino acid transporter. SATT expression in HeLa cells did not induce the transport of radiolabeled L-cysteine, L-glutamate, or related dicarboxylates. Northern blot hybridization revealed high levels of SATT mRNA in human skeletal muscle, pancreas, and brain, intermediate levels in heart, and low levels in liver, placenta, lung, and kidney. SATT transport characteristics are similar to the Na(+)-dependent neutral amino acid transport activity designated System ASC, but important differences are noted. These include: 1) SATTs apparent low expression in ASC-containing tissues such as liver or placenta; 2) the lack of mutual inhibition between serine and cysteine; and 3) the lack of trans-stimulation. SATT may represent one of multiple activities that exhibit System ASC-like transport characteristics in diverse tissues and cell lines.


Cell Death & Differentiation | 2011

Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress

Lena Bouman; A Schlierf; Anne Kathrin Lutz; Jixiu Shan; A Deinlein; Juergen Kast; Z Galehdar; V Palmisano; N Patenge; Daniela Berg; Thomas Gasser; R Augustin; Dietrich Trümbach; Isabella Irrcher; David S. Park; Wolfgang Wurst; Michael S. Kilberg; Jörg Tatzelt; Konstanze F. Winklhofer

Loss of parkin function is responsible for the majority of autosomal recessive parkinsonism. Here, we show that parkin is not only a stress-protective, but also a stress-inducible protein. Both mitochondrial and endoplasmic reticulum (ER) stress induce an increase in parkin-specific mRNA and protein levels. The stress-induced upregulation of parkin is mediated by ATF4, a transcription factor of the unfolded protein response (UPR) that binds to a specific CREB/ATF site within the parkin promoter. Interestingly, c-Jun can bind to the same site, but acts as a transcriptional repressor of parkin gene expression. We also present evidence that mitochondrial damage can induce ER stress, leading to the activation of the UPR, and thereby to an upregulation of parkin expression. Vice versa, ER stress results in mitochondrial damage, which can be prevented by parkin. Notably, the activity of parkin to protect cells from stress-induced cell death is independent of the proteasome, indicating that proteasomal degradation of parkin substrates cannot explain the cytoprotective activity of parkin. Our study supports the notion that parkin has a role in the interorganellar crosstalk between the ER and mitochondria to promote cell survival under stress, suggesting that both ER and mitochondrial stress can contribute to the pathogenesis of Parkinsons disease.


Journal of Biological Chemistry | 2004

Amino Acid Deprivation Induces the Transcription Rate of the Human Asparagine Synthetase Gene through a Timed Program of Expression and Promoter Binding of Nutrient-responsive Basic Region/Leucine Zipper Transcription Factors as Well as Localized Histone Acetylation

Hong Chen; Yuan Xiang Pan; Elizabeth E. Dudenhausen; Michael S. Kilberg

Expression of human asparagine synthetase (ASNS), which catalyzes asparagine and glutamate biosynthesis, is transcriptionally induced following amino acid deprivation. Previous overexpression and electrophoresis mobility shift analysis showed the involvement of the transcription factors ATF4, C/EBPβ, and ATF3-FL through the nutrient-sensing response element-1 (NSRE-1) within the ASNS promoter. Amino acid deprivation caused an elevated mRNA level for ATF4, C/EBPβ, and ATF3-FL, and the present study established that the nuclear protein content for ATF4 and ATF3-FL were increased during amino acid limitation, whereas C/EBPβ-LIP declined slightly. The total amount of C/EBPβ-LAP protein was unchanged, but changes in the distribution among multiple C/EBPβ-LAP forms were observed. Overexpression studies established that ATF4, ATF3-FL, and C/EBPβ-LAP could coordinately modulate the transcription from the human ASNS promoter. Chromatin immunoprecipitation demonstrated that amino acid deprivation increased ATF3-FL, ATF4, and C/EBPβ binding to the ASNS promoter and enhanced promoter association of RNA polymerase II, TATA-binding protein, and TFIIB of the general transcription machinery. A time course revealed a markedly different temporal order of interaction between these transcription factors and the ASNS promoter. During the initial 2 h, there was a 20-fold increase in ATF4 binding and a rapid increase in histone H3 and H4 acetylation, which closely paralleled the increased transcription rate of the ASNS gene, whereas the increase in ATF3-FL and C/EBPβ binding was considerably slower and more closely correlated with the decline in transcription rate between 2 and 6 h. The data suggest that ATF3-FL and C/EBPβ act as transcriptional suppressors for the ASNS gene to counterbalance the transcription rate activated by ATF4 following amino acid deprivation.


Biochemical Journal | 2001

Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells.

Ara M. Aslanian; Bradley S. Fletcher; Michael S. Kilberg

Childhood acute lymphoblastic leukaemia (ALL) is treated by combination chemotherapy with a number of drugs, always including the enzyme L-asparaginase (ASNase). Although the initial remission rate is quite high, relapse and associated drug resistance are a significant problem. In vitro studies have demonstrated increased asparagine synthetase (AS) expression in ASNase-resistant cells, which has led to the hypothesis that elevated AS activity permits drug-resistant survival. The data presented show that not only is elevated AS expression a property of ASNase-resistant MOLT-4 human leukaemia cells, but that short-term (12 h) treatment of the cells with ASNase causes a relatively rapid induction of AS expression. The results also document that the elevated expression of AS in ASNase-resistant cells is not fully reversible, even 6 weeks after ASNase removal from the culture medium. Furthermore, ASNase resistance, assessed as both drug-insensitive cell growth rates and decreased drug-induced apoptosis, parallels this irreversible AS expression. Mimicking the elevated AS activity in ASNase-resistant cells by overexpression of the human AS protein by stable retroviral transformation of parental MOLT4 cells is sufficient to induce the ASNase-resistance phenotype. These data document that ASNase resistance in ALL cells is a consequence of elevated AS expression and that although other drug-induced metabolic changes occur, they are secondary to the increased asparagine biosynthetic rate.


Journal of Biological Chemistry | 2008

C/EBP Homology Protein (CHOP) Interacts with Activating Transcription Factor 4 (ATF4) and Negatively Regulates the Stress-dependent Induction of the Asparagine Synthetase Gene

Nan Su; Michael S. Kilberg

C/EBP homology protein (CHOP), a stress-induced transcription factor, is involved in transcriptional regulation, cell cycle, and apoptosis. The present studies identified CHOP as an interacting partner of activating transcription factor (ATF) 4 in a yeast two-hybrid screen and confirmed their interaction in HEK293T cells. CHOP protein levels rose modestly and transiently during amino acid deprivation, whereas endoplasmic reticulum stress caused a much higher and sustained expression of CHOP protein. Exogenous CHOP expression enhanced the TRB3 gene induction by amino acid deprivation. Conversely, CHOP suppressed the induction of the endogenous asparagine synthetase (ASNS) gene and inhibited transcription from a reporter gene driven by the ASNS promoter following activation by ATF4 or amino acid deprivation. Short interfering RNA-mediated knockdown of CHOP further enhanced the induction of ASNS by either amino acid deprivation or endoplasmic reticulum stress. The CHOP-dependent repression of the ASNS gene required the entire CHOP protein, arguing against the possibility of simple sequestration of ATF4 by the CHOP leucine zipper domain, and chromatin immunoprecipitation analysis showed association of CHOP with the ASNS and TRB3 promoters. Interestingly, chromatin immunoprecipitation also showed that CHOP was associated with the C/EBP-ATF composite site regions of the SNAT2, VEGF, and CAT-1 genes, despite no significant effect on their expression after exogenous CHOP overexpression. Collectively, the results document that CHOP is a member of the transcription factor network that controls the stress-induced regulation of specific C/EBP-ATF-containing genes, such as ASNS.

Collaboration


Dive into the Michael S. Kilberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Can Zhong

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chin Chen

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge