Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Kobor is active.

Publication


Featured researches published by Michael S. Kobor.


Molecular and Cellular Biology | 2002

RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach.

Nevan J. Krogan; Minkyu Kim; Seong Hoon Ahn; Guoqing Zhong; Michael S. Kobor; Gerard Cagney; Andrew Emili; Ali Shilatifard; Stephen Buratowski; Jack Greenblatt

ABSTRACT To physically characterize the web of interactions connecting the Saccharomyces cerevisiae proteins suspected to be RNA polymerase II (RNAPII) elongation factors, subunits of Spt4/Spt5 and Spt16/Pob3 (corresponding to human DSIF and FACT), Spt6, TFIIF (Tfg1, -2, and -3), TFIIS, Rtf1, and Elongator (Elp1, -2, -3, -4, -5, and -6) were affinity purified under conditions designed to minimize loss of associated polypeptides and then identified by mass spectrometry. Spt16/Pob3 was discovered to associate with three distinct complexes: histones; Chd1/casein kinase II (CKII); and Rtf1, Paf1, Ctr9, Cdc73, and a previously uncharacterized protein, Leo1. Rtf1 and Chd1 have previously been implicated in the control of elongation, and the sensitivity to 6-azauracil of strains lacking Paf1, Cdc73, or Leo1 suggested that these proteins are involved in elongation by RNAPII as well. Confirmation came from chromatin immunoprecipitation (ChIP) assays demonstrating that all components of this complex, including Leo1, cross-linked to the promoter, coding region, and 3′ end of the ADH1 gene. In contrast, the three subunits of TFIIF cross-linked only to the promoter-containing fragment of ADH1. Spt6 interacted with the uncharacterized, essential protein Iws1 (interacts with Spt6), and Spt5 interacted either with Spt4 or with a truncated form of Spt6. ChIP on Spt6 and the novel protein Iws1 resulted in the cross-linking of both proteins to all three regions of the ADH1 gene, suggesting that Iws1 is likely an Spt6-interacting elongation factor. Spt5, Spt6, and Iws1 are phosphorylated on consensus CKII sites in vivo, conceivably by the Chd1/CKII associated with Spt16/Pob3. All the elongation factors but Elongator copurified with RNAPII.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Factors underlying variable DNA methylation in a human community cohort

Lucia L. Lam; Eldon Emberly; Hunter B. Fraser; Sarah Neumann; Edith Chen; Gregory E. Miller; Michael S. Kobor

Epigenetics is emerging as an attractive mechanism to explain the persistent genomic embedding of early-life experiences. Tightly linked to chromatin, which packages DNA into chromosomes, epigenetic marks primarily serve to regulate the activity of genes. DNA methylation is the most accessible and characterized component of the many chromatin marks that constitute the epigenome, making it an ideal target for epigenetic studies in human populations. Here, using peripheral blood mononuclear cells collected from a community-based cohort stratified for early-life socioeconomic status, we measured DNA methylation in the promoter regions of more than 14,000 human genes. Using this approach, we broadly assessed and characterized epigenetic variation, identified some of the factors that sculpt the epigenome, and determined its functional relation to gene expression. We found that the leukocyte composition of peripheral blood covaried with patterns of DNA methylation at many sites, as did demographic factors, such as sex, age, and ethnicity. Furthermore, psychosocial factors, such as perceived stress, and cortisol output were associated with DNA methylation, as was early-life socioeconomic status. Interestingly, we determined that DNA methylation was strongly correlated to the ex vivo inflammatory response of peripheral blood mononuclear cells to stimulation with microbial products that engage Toll-like receptors. In contrast, our work found limited effects of DNA methylation marks on the expression of associated genes across individuals, suggesting a more complex relationship than anticipated.


Epigenetics & Chromatin | 2013

Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array

E. Magda Price; Allison M. Cotton; Lucia L. Lam; Pau Farré; Eldon Emberly; Carolyn J. Brown; Wendy P. Robinson; Michael S. Kobor

BackgroundMeasurement of genome-wide DNA methylation (DNAm) has become an important avenue for investigating potential physiologically-relevant epigenetic changes. Illumina Infinium (Illumina, San Diego, CA, USA) is a commercially available microarray suite used to measure DNAm at many sites throughout the genome. However, it has been suggested that a subset of array probes may give misleading results due to issues related to probe design. To facilitate biologically significant data interpretation, we set out to enhance probe annotation of the newest Infinium array, the HumanMethylation450 BeadChip (450 k), with >485,000 probes covering 99% of Reference Sequence (RefSeq) genes (National Center for Biotechnology Information (NCBI), Bethesda, MD, USA). Annotation that was added or expanded on includes: 1) documented SNPs in the probe target, 2) probe binding specificity, 3) CpG classification of target sites and 4) gene feature classification of target sites.ResultsProbes with documented SNPs at the target CpG (4.3% of probes) were associated with increased within-tissue variation in DNAm. An example of a probe with a SNP at the target CpG demonstrated how sample genotype can confound the measurement of DNAm. Additionally, 8.6% of probes mapped to multiple locations in silico. Measurements from these non-specific probes likely represent a combination of DNAm from multiple genomic sites. The expanded biological annotation demonstrated that based on DNAm, grouping probes by an alternative high-density and intermediate-density CpG island classification provided a distinctive pattern of DNAm. Finally, variable enrichment for differentially methylated probes was noted across CpG classes and gene feature groups, dependant on the tissues that were compared.ConclusionDNAm arrays offer a high-throughput approach for which careful consideration of probe content should be utilized to better understand the biological processes affected. Probes containing SNPs and non-specific probes may affect the assessment of DNAm using the 450 k array. Additionally, probe classification by CpG enrichment classes and to a lesser extent gene feature groups resulted in distinct patterns of DNAm. Thus, we recommend that compromised probes be removed from analyses and that the genomic context of DNAm is considered in studies deciphering the biological meaning of Illumina 450 k array data.


Aging Cell | 2015

DNA methylation and healthy human aging

Meaghan J. Jones; Sarah J. Goodman; Michael S. Kobor

The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next‐generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site‐specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age‐related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining ‘epigenetic age’ for human health and outline some important caveats to existing and future studies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis

Nicole D. Powell; Erica K. Sloan; Michael T. Bailey; Jesusa M.G. Arevalo; Gregory E. Miller; Edith Chen; Michael S. Kobor; Brenda F. Reader; John F. Sheridan; Steven W. Cole

Significance Chronic exposure to adverse social environments is associated with increased risk of disease, and stress-related increases in the expression of proinflammatory genes appear to contribute to these effects. The present study identifies a biological mechanism of such effects in the ability of the sympathetic nervous system to up-regulate bone marrow production of immature, proinflammatory monocytes. These effects are mediated by β-adrenergic receptors and the myelopoietic growth factor GM-CSF, and suggest new targets for interventions to protect health in the context of chronic social stress. Across a variety of adverse life circumstances, such as social isolation and low socioeconomic status, mammalian immune cells have been found to show a conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes. The present study examines whether such effects might stem in part from the selective up-regulation of a subpopulation of immature proinflammatory monocytes (Ly-6chigh in mice, CD16− in humans) within the circulating leukocyte pool. Transcriptome representation analyses showed relative expansion of the immature proinflammatory monocyte transcriptome in peripheral blood mononuclear cells from people subject to chronic social stress (low socioeconomic status) and mice subject to repeated social defeat. Cellular dissection of the mouse peripheral blood mononuclear cell transcriptome confirmed these results, and promoter-based bioinformatic analyses indicated increased activity of transcription factors involved in early myeloid lineage differentiation and proinflammatory effector function (PU.1, NF-κB, EGR1, MZF1, NRF2). Analysis of bone marrow hematopoiesis confirmed increased myelopoietic output of Ly-6chigh monocytes and Ly-6cintermediate granulocytes in mice subject to repeated social defeat, and these effects were blocked by pharmacologic antagonists of β-adrenoreceptors and the myelopoietic growth factor GM-CSF. These results suggest that sympathetic nervous system-induced up-regulation of myelopoiesis mediates the proinflammatory component of the leukocyte CTRA dynamic and may contribute to the increased risk of inflammation-related disease associated with adverse social conditions.


Molecular Psychiatry | 2011

Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood.

Edith Chen; Gregory E. Miller; Michael S. Kobor; Steve W. Cole

The notion that family support may buffer individuals under adversity from poor outcomes has been theorized to have important implications for mental and physical health, but little is known about the biological mechanisms that explain these links. We hypothesized that adults who grew up in low socioeconomic status (SES) households but who experienced high levels of maternal warmth would be protected from the pro-inflammatory states typically associated with low SES. A total of 53 healthy adults (aged 25–40 years) low in SES early in life were assessed on markers of immune activation and systemic inflammation. Genome-wide transcriptional profiling also was conducted. Low early-life SES individuals who had mothers, who expressed high warmth toward them, exhibited less Toll-like receptor-stimulated production of interleukin 6, and reduced bioinformatic indications of pro-inflammatory transcription factor activity (NF-κB) and immune activating transcription factor activity (AP-1) compared to those who were low in SES early in life but experienced low maternal warmth. To the extent that such effects are causal, they suggest the possibility that the detrimental immunologic effects of low early-life SES environments may be partly diminished through supportive family climates.


Molecular Cell | 1999

An Unusual Eukaryotic Protein Phosphatase Required for Transcription by RNA Polymerase II and CTD Dephosphorylation in S. cerevisiae

Michael S. Kobor; Jacques Archambault; William Lester; Frank C. P. Holstege; O. Gileadi; David B. Jansma; Ezra G. Jennings; Fiona G. Kouyoumdjian; Alan R. Davidson; Richard A. Young; Jack Greenblatt

The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II is phosphorylated soon after transcriptional initiation. We show here that the essential FCP1 gene of S. cerevisiae is linked genetically to RNA polymerase II and encodes a CTD phosphatase essential for dephosphorylation of RNA polymerase II in vivo. Fcp1p contains a phosphatase motif, psi psi psi DXDX(T/V)psi psi, which is novel for eukaryotic protein phosphatases and essential for Fcp1p to function in vivo. This motif is also required for recombinant Fcp1p to dephosphorylate the RNA polymerase II CTD or the artificial substrate p-nitrophenylphosphate in vitro. The effects of fcp1 mutations in global run-on and genome-wide expression studies show that transcription by RNA polymerase II in S. cerevisiae generally requires CTD phosphatase.


Biochimica et Biophysica Acta | 2002

Regulation of transcription elongation by phosphorylation

Michael S. Kobor; Jack Greenblatt

The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.


Genome Research | 2014

The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes

Ai Ling Teh; Hong Pan; Li Chen; Mei-Lyn Ong; Shaillay Dogra; Johnny Wong; Julia L. MacIsaac; Sarah M. Mah; Lisa M. McEwen; Seang-Mei Saw; Keith M. Godfrey; Yap Seng Chong; Kenneth Kwek; Chee Keong Kwoh; Shu-E Soh; Mary Foong-Fong Chong; Sheila J. Barton; Neerja Karnani; Clara Yujing Cheong; Jan Paul Buschdorf; Walter Stünkel; Michael S. Kobor; Michael J. Meaney; Peter D. Gluckman; Joanna D. Holbrook

Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment. Accordingly, neonate methylomes contain molecular memory of the individual in utero experience. However, interindividual variation in methylation can also be a consequence of DNA sequence polymorphisms that result in methylation quantitative trait loci (methQTLs) and, potentially, the interaction between fixed genetic variation and environmental influences. We surveyed the genotypes and DNA methylomes of 237 neonates and found 1423 punctuate regions of the methylome that were highly variable across individuals, termed variably methylated regions (VMRs), against a backdrop of homogeneity. MethQTLs were readily detected in neonatal methylomes, and genotype alone best explained ∼25% of the VMRs. We found that the best explanation for 75% of VMRs was the interaction of genotype with different in utero environments, including maternal smoking, maternal depression, maternal BMI, infant birth weight, gestational age, and birth order. Our study sheds new light on the complex relationship between biological inheritance as represented by genotype and individual prenatal experience and suggests the importance of considering both fixed genetic variation and environmental factors in interpreting epigenetic variation.


Molecular Cell | 2011

The specificity and topology of chromatin interaction pathways in yeast

Tineke L. Lenstra; Joris J. Benschop; Tae Soo Kim; Julia M. Schulze; Nathalie Brabers; Thanasis Margaritis; Loes A.L. van de Pasch; Sebastiaan van Heesch; Mariel O. Brok; Marian J. A. Groot Koerkamp; Cheuk W. Ko; Dik van Leenen; Katrin Sameith; Sander R. van Hooff; Philip Lijnzaad; Patrick Kemmeren; Thomas Hentrich; Michael S. Kobor; Stephen Buratowski; Frank C. P. Holstege

Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.

Collaboration


Dive into the Michael S. Kobor's collaboration.

Top Co-Authors

Avatar

Julia L. MacIsaac

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Meaghan J. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Lisa M. McEwen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander M. Morin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Neumann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Mah

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge