Michael S. Ominsky
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael S. Ominsky.
Nature Medicine | 2007
Danielle Diarra; Marina Stolina; Karin Polzer; Jochen Zwerina; Michael S. Ominsky; Denise Dwyer; Adelheid Korb; Josef S Smolen; Markus Hoffmann; Clemens Scheinecker; Desiree van der Heide; Robert Landewé; Dave Lacey; William G. Richards; Georg Schett
Degenerative and inflammatory joint diseases lead to a destruction of the joint architecture. Whereas degenerative osteoarthritis results in the formation of new bone, rheumatoid arthritis leads to bone resorption. The molecular basis of these different patterns of joint disease is unknown. By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, we were able to reverse the bone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis. In this way, no overall bone erosion resulted, although bony nodules, so-called osteophytes, did form. We identified tumor necrosis factor-α (TNF) as a key inducer of DKK-1 in the mouse inflammatory arthritis model and in human rheumatoid arthritis. These results suggest that the Wnt pathway is a key regulator of joint remodeling.
Journal of Bone and Mineral Research | 2008
Xiaodong Li; Michael S. Ominsky; Qing-Tian Niu; Ning Sun; Betsy Daugherty; Diane D'Agostin; Carole Kurahara; Yongming Gao; Jin Cao; Jianhua Gong; Frank Asuncion; Mauricio Barrero; Kelly Warmington; Denise Dwyer; Marina Stolina; Sean Morony; Ildiko Sarosi; Paul J. Kostenuik; David L. Lacey; W. Scott Simonet; Hua Zhu Ke; Chris Paszty
Introduction: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone.
Journal of Bone and Mineral Research | 2009
Xiaodong Li; Michael S. Ominsky; Kelly Warmington; Sean Morony; Jianhua Gong; Jin Cao; Yongming Gao; Victoria Shalhoub; Barbara Tipton; Raj Haldankar; Qing Chen; Aaron George Winters; Tom Boone; Zhaopo Geng; Qing-Tian Niu; Hua Zhu Ke; Paul J. Kostenuik; W. Scott Simonet; David L. Lacey; Chris Paszty
The development of bone‐rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long‐standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostins role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl‐AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six‐month‐old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency‐induced bone loss, at which point Scl‐AbII was administered for 5 wk. Scl‐AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency‐induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non‐ovariectomized control rats. Taken together, these preclinical results establish sclerostins role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody‐mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone‐related disorders, such as postmenopausal osteoporosis.
Journal of Bone and Mineral Research | 2010
Michael S. Ominsky; Fay Vlasseros; Jacquelin Jolette; Susan Y. Smith; Brian Stouch; George Doellgast; Jianhua Gong; Yongming Gao; Jin Cao; Kevin Graham; Barbara Tipton; Jill Cai; Rohini Deshpande; Lei Zhou; Michael Hale; Daniel John Lightwood; Alistair J. Henry; Andrew George Popplewell; Adrian Moore; Martyn K. Robinson; David L. Lacey; W. Scott Simonet; Chris Paszty
The development of bone‐rebuilding anabolic agents for treating bone‐related conditions has been a long‐standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation. More recently, administration of sclerostin‐neutralizing monoclonal antibodies in rodent studies has shown that pharmacologic inhibition of sclerostin results in increased bone formation, bone mass, and bone strength. To explore the effects of sclerostin inhibition in primates, we administered a humanized sclerostin‐neutralizing monoclonal antibody (Scl‐AbIV) to gonad‐intact female cynomolgus monkeys. Two once‐monthly subcutaneous injections of Scl‐AbIV were administered at three dose levels (3, 10, and 30 mg/kg), with study termination at 2 months. Scl‐AbIV treatment had clear anabolic effects, with marked dose‐dependent increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. Bone densitometry showed that the increases in bone formation with Scl‐AbIV treatment resulted in significant increases in bone mineral content (BMC) and/or bone mineral density (BMD) at several skeletal sites (ie, femoral neck, radial metaphysis, and tibial metaphysis). These increases, expressed as percent changes from baseline were 11 to 29 percentage points higher than those found in the vehicle‐treated group. Additionally, significant increases in trabecular thickness and bone strength were found at the lumbar vertebrae in the highest‐dose group. Taken together, the marked bone‐building effects achieved in this short‐term monkey study suggest that sclerostin inhibition represents a promising new therapeutic approach for medical conditions where increases in bone formation might be desirable, such as in fracture healing and osteoporosis.
Journal of Bone and Mineral Research | 2009
Paul J. Kostenuik; Hung Q. Nguyen; James McCabe; Kelly Warmington; Carol Kurahara; Ning Sun; Ching Chen; Luke Li; Russ Cattley; Gwyneth Van; Shelia Scully; Robin Elliott; Mario Grisanti; Sean Morony; Hong Lin Tan; Frank Asuncion; Xiaodong Li; Michael S. Ominsky; Marina Stolina; Denise Dwyer; William C. Dougall; Nessa Hawkins; William J. Boyle; William Scott Simonet; John K. Sullivan
RANKL is a TNF family member that mediates osteoclast formation, activation, and survival by activating RANK. The proresorptive effects of RANKL are prevented by binding to its soluble inhibitor osteoprotegerin (OPG). Recombinant human OPG‐Fc recognizes RANKL from multiple species and reduced bone resorption and increased bone volume, density, and strength in a number of rodent models of bone disease. The clinical development of OPG‐Fc was discontinued in favor of denosumab, a fully human monoclonal antibody that specifically inhibits primate RANKL. Direct binding assays showed that denosumab bound to human RANKL but not to murine RANKL, human TRAIL, or other human TNF family members. Denosumab did not suppress bone resorption in normal mice or rats but did prevent the resorptive response in mice challenged with a human RANKL fragment encoded primarily by the fifth exon of the RANKL gene. To create mice that were responsive to denosumab, knock‐in technology was used to replace exon 5 from murine RANKL with its human ortholog. The resulting “huRANKL” mice exclusively express chimeric (human/murine) RANKL that was measurable with a human RANKL assay and that maintained bone resorption at slightly reduced levels versus wildtype controls. In young huRANKL mice, denosumab and OPG‐Fc each reduced trabecular osteoclast surfaces by 95% and increased bone density and volume. In adult huRANKL mice, denosumab reduced bone resorption, increased cortical and cancellous bone mass, and improved trabecular microarchitecture. These huRANKL mice have potential utility for characterizing the activity of denosumab in a variety of murine bone disease models.
Endocrine Reviews | 2012
Hua Zhu Ke; William G. Richards; Xiaodong Li; Michael S. Ominsky
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
Journal of Bone and Mineral Research | 2011
Michael S. Ominsky; Chaoyang Li; Xiaodong Li; Hong L Tan; Edward Lee; Mauricio Barrero; Franklin J. Asuncion; Denise Dwyer; Chun-Ya Han; Fay Vlasseros; Rana Samadfam; Jacquelin Jolette; Susan Y. Smith; Marina Stolina; David L. Lacey; William Scott Simonet; Chris Paszty; Gang Li; Hua Z. Ke
Therapeutic enhancement of fracture healing would help to prevent the occurrence of orthopedic complications such as nonunion and revision surgery. Sclerostin is a negative regulator of bone formation, and treatment with a sclerostin monoclonal antibody (Scl‐Ab) results in increased bone formation and bone mass in animal models. Our objective was to investigate the effects of systemic administration of Scl‐Ab in two models of fracture healing. In both a closed femoral fracture model in rats and a fibular osteotomy model in cynomolgus monkeys, Scl‐Ab significantly increased bone mass and bone strength at the site of fracture. After 10 weeks of healing in nonhuman primates, the fractures in the Scl‐Ab group had less callus cartilage and smaller fracture gaps containing more bone and less fibrovascular tissue. These improvements at the fracture site corresponded with improvements in bone formation, bone mass, and bone strength at nonfractured cortical and trabecular sites in both studies. Thus the potent anabolic activity of Scl‐Ab throughout the skeleton also was associated with an anabolic effect at the site of fracture. These results support the potential for systemic Scl‐Ab administration to enhance fracture healing in patients.
Journal of Bone and Mineral Research | 2010
Xiaodong Li; Kelly Warmington; Qing-Tian Niu; Franklin J. Asuncion; Mauricio Barrero; Mario Grisanti; Denise Dwyer; Brian Stouch; Theingi Thway; Marina Stolina; Michael S. Ominsky; Paul J. Kostenuik; William Scott Simonet; Chris Paszty; Hua Zhu Ke
The purpose of this study was to evaluate the effects of sclerostin inhibition by treatment with a sclerostin antibody (Scl‐AbII) on bone formation, bone mass, and bone strength in an aged, gonad‐intact male rat model. Sixteen‐month‐old male Sprague‐Dawley rats were injected subcutaneously with vehicle or Scl‐AbII at 5 or 25 mg/kg twice per week for 5 weeks (9–10/group). In vivo dual‐energy X‐ray absorptiometry (DXA) analysis showed that there was a marked increase in areal bone mineral density of the lumbar vertebrae (L1 to L5) and long bones (femur and tibia) in both the 5 and 25 mg/kg Scl‐AbII‐treated groups compared with baseline or vehicle controls at 3 and 5 weeks after treatment. Ex vivo micro–computed tomographic (µCT) analysis demonstrated improved trabecular and cortical architecture at the fifth lumbar vertebral body (L5), femoral diaphysis (FD), and femoral neck (FN) in both Scl‐AbII dose groups compared with vehicle controls. The increased cortical and trabecular bone mass was associated with a significantly higher maximal load of L5, FD, and FN in the high‐dose group. Bone‐formation parameters (ie, mineralizing surface, mineral apposition rate, and bone‐formation rate) at the proximal tibial metaphysis and tibial shaft were markedly greater on trabecular, periosteal, and endocortical surfaces in both Scl‐AbII dose groups compared with controls. These results indicate that sclerostin inhibition by treatment with a sclerostin antibody increased bone formation, bone mass, and bone strength in aged male rats and, furthermore, suggest that pharmacologic inhibition of sclerostin may represent a promising anabolic therapy for low bone mass in aged men.
Journal of Bone and Mineral Research | 2010
Ian R. Reid; Paul D. Miller; Jacques P. Brown; David L. Kendler; Astrid Fahrleitner-Pammer; Ivo Valter; Katre Maasalu; Michael A. Bolognese; Grattan C. Woodson; Henry G. Bone; Beiying Ding; Rachel B. Wagman; Javier San Martin; Michael S. Ominsky; David W. Dempster
Denosumab, a human monoclonal antibody against RANKL, reversibly inhibits osteoclast‐mediated bone resorption and has been developed for use in osteoporosis. Its effects on bone histomorphometry have not been described previously. Iliac crest bone biopsies were collected at 24 and/or 36 months from osteoporotic postmenopausal women in the FREEDOM study (45 women receiving placebo and 47 denosumab) and at 12 months from postmenopausal women previously treated with alendronate in the STAND study (21 continuing alendronate and 15 changed to denosumab at trial entry). Qualitative histologic evaluation of biopsies was unremarkable. In the FREEDOM study, median eroded surface was reduced by more than 80% and osteoclasts were absent from more than 50% of biopsies in the denosumab group. Double labeling in trabecular bone was observed in 94% of placebo bones and in 19% of those treated with denosumab. Median bone‐formation rate was reduced by 97%. Among denosumab‐treated subjects, those with double labels and those with absent labels had similar levels of biochemical markers of bone turnover. In the STAND trial, indices of bone turnover tended to be lower in the denosumab group than in the alendronate group. Double labeling in trabecular bone was seen in 20% of the denosumab biopsies and in 90% of the alendronate samples. Denosumab markedly reduces bone turnover and also reduces fracture numbers. Longer follow‐up is necessary to determine how long such low turnover is safe.
Annals of the Rheumatic Diseases | 2010
Gisela Ruiz Heiland; Karin Zwerina; Wolfgang Baum; Trayana Kireva; Jörg H W Distler; Mario Grisanti; Frank Asuncion; Xiadong Li; Michael S. Ominsky; William G. Richards; Georg Schett; Jochen Zwerina
Introduction Inflammation is a major risk factor for systemic bone loss. Proinflammatory cytokines like tumour necrosis factor (TNF) affect bone homeostasis and induce bone loss. It was hypothesised that impaired bone formation is a key component in inflammatory bone loss and that Dkk-1, a Wnt antagonist, is a strong inhibitor of osteoblast-mediated bone formation. Methods TNF transgenic (hTNFtg) mice were treated with neutralising antibodies against TNF, Dkk-1 or a combination of both agents. Systemic bone architecture was analysed by bone histomorphometry. The expression of β-catenin, osteoprotegerin and osteocalcin was analysed. In vitro, primary osteoblasts were stimulated with TNF and analysed for their metabolic activity and expression of Dkk-1 and sclerostin. Sclerostin expression and osteocyte death upon Dkk-1 blockade were analysed in vivo. Results Neutralisation of Dkk-1 completely protected hTNFtg mice from inflammatory bone loss by preventing TNF-mediated impaired osteoblast function and enhanced osteoclast activity. These findings were accompanied by enhanced skeletal expression of β-catenin, osteocalcin and osteoprotegerin. In vitro, TNF rapidly increased Dkk-1 expression in primary osteoblasts and effectively blocked osteoblast differentiation. Moreover, blockade of Dkk-1 not only rescued impaired osteoblastogenesis but also neutralised TNF-mediated sclerostin expression in fully differentiated osteoblasts in vitro and in vivo. Conclusions These findings indicate that low bone formation and expression of Dkk-1 trigger inflammatory bone loss. Dkk-1 blocks osteoblast differentiation, induces sclerostin expression and leads to osteocyte death. Inhibition of Dkk-1 may thus be considered as a potent strategy to protect bone from inflammatory damage.