Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Parker is active.

Publication


Featured researches published by Michael S. Parker.


Regulatory Peptides | 2002

Agonist internalization by cloned Y1 neuropeptide Y (NPY) receptor in Chinese hamster ovary cells shows strong preference for NPY, endosome-linked entry and fast receptor recycling.

Steven L. Parker; Michael S. Parker; Ingrid Lundell; Ambikaipakan Balasubramaniam; Armin Buschauer; Justin K. Kane; A. Yalcin; Magnus M. Berglund

In Chinese hamster ovary (CHO) cells expressing the cloned guinea-pig Y1 receptor, the saturable, receptor-linked internalization of NPY (NPY)-related peptides showed the rank order of human/rat neuropeptide Y (hNPY)>pig/rat peptide YY (pPYY)>=(Pro(34))human PYY>(Leu(31),Pro(34))hNPY>(Leu(31),Pro(34))hPYY>>BVD-11 (a selective Y1 antagonist). All agonists accessed similar numbers of Y1 sites in particulates from disrupted cells, with relatively small affinity variation. The rate of internalization could significantly depend on the overall interactivity of the agonist peptide (reflected in sensitivity to chaotropic agents, as well as in the level of non-saturable binding and internalization). Concentration-dependent inhibition of the agonist-driven CHO-Y1 internalization was found with filipin III (a cholesterol-complexing macrolide), and confirmed with inhibitors of clathrin lattice formation, phenylarsine oxide (PAO) and sucrose. In the concentration range affecting Y1 internalization, none of the above treatments or agents significantly alter agonist affinity for Y1 cell surface or particulate receptors. Largely similar responses to the above inhibitors were observed in CHO-Y1 cells for internalization of human transferrin. Internalization of CHO-Y1 receptor apparently is driven by NPY in strong preference to other naturally encountered agonists. At 37 degrees C, most of the internalized receptor is rapidly recycled through endosome-like membrane elements, detectable in Percoll gradients.


European Journal of Pharmacology | 2003

Ligand internalization by cloned neuropeptide Y Y5 receptors excludes Y2 and Y4 receptor-selective peptides

Steven L. Parker; Michael S. Parker; Armin Buschauer; Ambikaipakan Balasubramaniam

In human embryonic kidney-293 (HEK-293) cells, the cloned human neuropeptide Y Y5 receptor saturably internalized agonists, with the rank order of neuropeptide Y-(19-23)-[Gly1,Ser3,Gln4,Thr6,Ala31,Aib32,Gln34]human pancreatic polypeptide (neuropeptide Y-Aib-pancreatic polypeptide)>human neuropeptide Y>porcine peptide YY>[Pro34]human peptide YY>[Leu31,Pro34]human peptide YY>>human peptide YY-(3-36). Human pancreatic polypeptide competed [125I]neuropeptide Y binding and internalization in neuropeptide Y Y5 receptor-expressing cells, but itself showed no internalization. The internalization was strongly dependent on temperature. The surface binding, and especially the internalization, of human neuropeptide Y were highly sensitive to the clathrin network inhibitor phenylarsine oxide, and to the cholesterol-complexing antibiotic filipin III. The internalized ligands were present in particles corresponding to secondary endosomes in Percoll gradients, but especially in particles banding with the acid hexosaminidase lysosomal marker. At any temperature tested, internalization of the neuropeptide Y Y5 receptor driven by human neuropeptide Y in HEK-293 cells was much slower than the internalization of the neuropeptide Y Y1 receptor reported in the same cells, or in Chinese hamster ovary (CHO) cells. The neuropeptide Y Y5 receptor subtype could be the metabotropic receptor responding to protracted challenges by neuropeptide Y-like peptides, and its density could be little sensitive to concentration of extracellular agonists.


European Journal of Pharmacology | 1996

Differences in cation sensitivity of ligand binding to Y1 and Y2 subtype of neuropeptide Y receptor of rat brain

Michael S. Parker; William R. Crowley; Steven L. Parker

The binding of selective ligands to the Y1 subtype of neuropeptide Y receptor in rat brain particulates was promoted by Ca2+ and also stimulated by Sr2+, but reversibly reduced by Ba2+, Mg2+, Mn2+, by the organic polycations neomycin and spermidine, and by chelating agents. The alkali monovalent cations inhibited the Ca(2+)-enabled Y1 subtype binding with some selectivity (Cs+ > or = NH4+ > Li+ > Na+, K+), with half-inhibition between 70-120 mM. The specific Y2 subtype binding was enhanced by all alkaline-earth divalent cations, Mn2+, neomycin and spermidine in the range of 0.1-10 mM, and by alkali cations at up to 100 mM, and also by Na+ salts of the chelators EGTA and EDTA. The large disparity in cation sensitivity indicates substantial differences in the structure of the binding sites of the Y1 and Y2 receptors, predictable from known distinct features of ligand epitopes and of primary structure of the receptors.


Peptides | 2001

Blockade of pancreatic polypeptide-sensitive neuropeptide Y (NPY) receptors by agonist peptides is prevented by modulators of sodium transport. Implications for receptor signaling and regulation

Michael S. Parker; Magnus M. Berglund; Ingrid Lundell; Steven L. Parker

Ligand binding to rodent pancreatic polypeptide-responding neuropeptide Y (NPY) receptors (here termed PP/NPY receptors), or to cloned Y4 or Y5 receptors, is selectively inhibited by amiloride, peptide or alkylating modulators of sodium transport. The PP/NPY and Y4 receptors are also selectively blocked by human or rat pancreatic polypeptide (PP) and the blocking peptides are not dissociated by high concentrations of alkali chlorides (which restore most of the binding of subtype-selective agonists to Y1 and Y2 sites). The PP/NPY receptors could also be blocked by NPY and related full-length peptides, including Y1-selective agonists (IC50 300-400 pM). The cloned Y(4) receptors from three species are much less sensitive to NPY or PYY. The sensitivity of both the PP/NPY sites and the Y(4) sites to Y2-selective peptides is quite low. The ligand attachment to PP/NPY sites is also very sensitive to peptidic Y1 antagonist ((Cys31,NVal34NPY27-36))2, which however blocks these sites at much higher molarities. Blockade of PP/NPY and Y4 sites by agonist peptides can be largely prevented by N5-substituted amiloride modulators of Na+ transport, and by RFamide NRNFLRF.NH2, but not by Ca2+ channel blockers, or by inhibitors of K+ transport. Protection of both PP/NPY and Y4 sites against blockade by human or rat pancreatic polypeptide is also afforded by short N-terminally truncated NPY-related peptides. The above results are consistent with a stringent and selective activity regulation for rabbit PP/NPY receptor(s) that may serve to differentiate agonists and constrain signaling, and could involve transporter-like interactants.


Regulatory Peptides | 2005

Internalization of cloned pancreatic polypeptide receptors is accelerated by all types of Y4 agonists

Michael S. Parker; Renu Sah; Sulaiman Sheriff; Ambikaipakan Balasubramaniam; Steven L. Parker

Internalization of cloned rat or human Y4 receptors expressed in Chinese hamster ovary (CHO) cells increased with concentration of all types of Y4 agonists, including human and rat pancreatic polypeptides, the Y1 receptor group co-agonists possessing C-terminal TRPRY.NH2 pentapeptide, and a C-terminally amidated dimeric nonapeptide related to neuropeptide Y, GR231118. These peptides also inhibited forskolin-stimulated adenylyl cyclase activity in Y4 receptor-expressing cells, and stimulated the binding of 35S-labeled GTP-gamma-S to pertussis toxin-sensitive G-proteins in particulates from these cells. Peptide VD-11 (differing from GR231118 only by C-terminal oxymethylation) acted as a competitive antagonist in all of the above processes. Agonist-induced stimulation of the Y4 receptor internalization persisted in the presence of allosteric inhibitors of hPP binding, N5-substituted amilorides, which also were relatively little active in G-protein stimulation and cyclase inhibition by Y4 agonists. Acceleration of Y4 receptor internalization by agonists apparently is related to relaxation of allosteric constraints to ligand attachment and sequestration of the receptor-ligand complex.


Peptides | 2002

Pancreatic polypeptide receptors: affinity, sodium sensitivity and stability of agonist binding

Michael S. Parker; Ingrid Lundell; Steven L. Parker

Cloned rat, human and guinea-pig Y4 pancreatic polypeptide (PP) receptors expressed in Chinese hamster ovary (CHO) cells, as well as the rabbit Y4-like PP receptor, show a selective sensitivity to Na+ over K+ ion in PP attachment, but little sensitivity to Na+ in dissociation of bound PP peptides. Agonist binding to Y4 receptors of intact CHO cells also shows much greater sensitivity to Na+ over K+, and a tenacious attachment of the bound agonist. Binding sensitivity to K+ is greatly enhanced upon receptor solubilization. Pancreatic polypeptide sites also show large sensitivity to modulators of Na+ transport such as N5-substituted amilorides and to RFamides, as different from Y1 or Y2 receptors. Thus, PP binding is modulated by cation-induced changes in site environment (with selectivity for Na+) and ultimately results in a blocking attachment. This would support receptor operation in the presence of ion gradients, as well as prolonged agonist-delimited signaling activity (which can include partial antagonism). Also, this could point to an evolutionary adaptation enabling small numbers of PP receptors to perform extensive metabolic tasks in response to low agonist signals.


Regulatory Peptides | 2007

Oligomerization of neuropeptide Y (NPY) Y2 receptors in CHO cells depends on functional pertussis toxin-sensitive G-proteins

Steven L. Parker; Michael S. Parker; Floyd R. Sallee; Ambikaipakan Balasubramaniam

Human neuropeptide Y Y2 receptors expressed in CHO cells are largely oligomeric, and upon solubilization are recovered by density gradient centrifugation as approximately 180 kDa complexes of receptor dimers and G-protein heterotrimers. A large fraction of the receptors is inactivated in the presence of pertussis toxin, in parallel with inactivation of Gi alpha subunits (with half-periods of about 4 h for both). This is accompanied by a very long-lasting loss of receptor dimers and of masked surface Y2 sites (an apparent receptor reserve pre-coupled mainly to Gi alpha subunit-containing G-proteins). However, surface Y2 receptors accessible to large peptide agonists are much less sensitive to the toxin. All surface Y2 receptors are rapidly blocked by Y2 antagonist BIIE0246, with a significant loss of the dimers, but with little change of basal Gi activity. However, both dimers and Y2 receptor compartmentalization are restored within 24 h after removal of the antagonist. In CHO cells, the maintenance and organization of Y2 receptors appear to critically depend on functional pertussis toxin-sensitive G-proteins.


Regulatory Peptides | 1998

Characterization of Y1, Y2 and Y5 subtypes of the neuropeptide Y (NPY) receptor in rabbit kidney: Sensitivity of ligand binding to guanine nucleotides and phospholipase C inhibitors

Steven L. Parker; Michael S. Parker; William R. Crowley

The binding of two peptide YY/neuropeptide Y analogues selective for major subtypes of neuropeptide Y (NPY) receptors was compared in particulates from rabbit kidney cortex employing modulators of activity of G-proteins, phospholipase enzymes, and ion channels. The binding of (Leu31,Pro34)human peptide YY resembled the patterns observed previously for the brain tissue Y1 receptor, exhibiting a high sensitivity to monovalent cations, disulfide disruptors, guanosine polyphosphates and phospholipase C inhibitors. However, this binding was bimodal in response to human pancreatic polypeptide and to peptides selective for the Y2 subtype of the NPY receptor, displaying a large component pharmacologically similar to the brain Y5 receptor. This kidney Y5-like binding largely shared the sensitivity to monovalent cations, guanine nucleotides and phospholipase C inhibitors found for either the kidney or the brain Y1 receptor, and also was activated by Ca2+ ion. Both Y1- and Y5-like binding in the kidney displayed a uniformly low reactivity to a nonpeptidic Y1 antagonist, BIBP-3226, and to a receptor peptide mimetic, mastoparan analogue MAS-7. The kidney Y2 binding shared the low sensitivity to ionic environment observed for the brain Y2 subtype, and was only partially sensitive to guanine nucleotides or to MAS-7. The Y2 liganding had a sensitivity to phospholipase C inhibitors similar to the Y1/Y5 binding. This reactivity was retained in the fraction of the Y2 receptor persisting detergent solubilization in a high-affinity form, which, however, was activated rather than inhibited by G-protein agonists.


Regulatory Peptides | 2007

Parallel inactivation of Y2 receptor and G-proteins in CHO cells by pertussis toxin.

Steven L. Parker; Michael S. Parker; Renu Sah; Floyd R. Sallee; Ambikaipakan Balasubramaniam

The Y(2) receptor for neuropeptide Y (NPY) interacts with pertussis toxin (PTX)-sensitive G-proteins, but little is known about interdependence of their levels and functions. We found that PTX reduces Y(2) receptors expressed in CHO cells in parallel to inactivation of Gi G-proteins, to loss of inhibition by Y(2) agonists of forskolin-stimulated adenylyl cyclase, and to decrease in the binding of GTP-gamma-S. These losses were attenuated by the endosome alkalinizer ammonium chloride. Affinity of the Y(2) receptor was not changed by PTX treatment. Prolonged treatment induced a large decrease of Y(2) receptor immunoreactivity (more than 70% in 48 h). The Gi(3) alpha-subunit immunoreactivity decreased slowly (about 46% in 48 h). There was a significant increase in Gq alpha immunoreactivity and in fraction of Y(2) binding sensitive to a Gq-selective antagonist. Possibly linked to that, the surface Y(2) sites and the internalization of the Y(2) receptor were less than 40% reduced. However, the abundant masked Y(2) sites were eliminated by the toxin, and could be mainly coupled to PTX-sensitive G-proteins.


Amino Acids | 2008

An ion-responsive motif in the second transmembrane segment of rhodopsin-like receptors.

Michael S. Parker; Y. Y. Wong; Steven L. Parker

Summary.A L(M)xxxD(N, E) motif (x=a non-ionic amino acid residue, most frequently A, S, L or F; small capitals indicating a minor representation) is found in the second transmembrane (tm2) segment of most G-protein coupling metazoan receptors of the rhodopsin family (Rh-GPCRs). Changes in signal transduction, agonist binding and receptor cycling are known for numerous receptors bearing evolved or experimentally introduced mutations in this tm2 motif, especially of its aspartate residue. The [Na+] sensitivity of the receptor-agonist interaction relates to this aspartate in a number of Rh-GPCRs. Native non-conservative mutations in the tm2 motif only rarely coincide with significant changes in two other ubiquitous features of the rhodopsin family, the seventh transmembrane N(D)PxxY(F) motif and the D(E)RY(W,F) or analogous sequence at the border of the third transmembrane helix and the second intracellular loop. Native tm2 mutations with Rh-GPCRs frequently result in constitutive signaling, and with visual opsins also in shifts to short-wavelength sensitivity. Substitution of a strongly basic residue for the tm2 aspartate in Taste-2 receptors could be connected to a lack of sodium sensing by these receptors. These properties could be consistent with ionic interactions, and even of ion transfer, that involve the tm2 motif. A decrease in cation sensing by this motif is usually connected to an enhanced constitutive interaction of the mutated receptors with cognate G- proteins, and also relates to both the constitutive and the overall activity of the short-wavelength opsins.

Collaboration


Dive into the Michael S. Parker's collaboration.

Top Co-Authors

Avatar

Steven L. Parker

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renu Sah

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Edwards A. Park

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Trevor W. Sweatman

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge