Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Strano is active.

Publication


Featured researches published by Michael S. Strano.


Nature Nanotechnology | 2012

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides

Qing Hua Wang; Kourosh Kalantar-zadeh; Andras Kis; Jonathan N. Coleman; Michael S. Strano

The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.


Science | 2013

Liquid Exfoliation of Layered Materials

Valeria Nicolosi; Manish Chhowalla; Mercouri G. Kanatzidis; Michael S. Strano; Jonathan N. Coleman

Background Since at least 400 C.E., when the Mayans first used layered clays to make dyes, people have been harnessing the properties of layered materials. This gradually developed into scientific research, leading to the elucidation of the laminar structure of layered materials, detailed understanding of their properties, and eventually experiments to exfoliate or delaminate them into individual, atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion of interest in two-dimensional materials. Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional structures. The archetypal example is graphite, which consists of stacked graphene monolayers. However, there are many others: from MoS2 and layered clays to more exotic examples such as MoO3, GaTe, and Bi2Se3. These materials display a wide range of electronic, optical, mechanical, and electrochemical properties. Over the past decade, a number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-ratio nanosheets with enormous surface area, which are ideal for applications that require surface activity. More importantly, however, the two-dimensional confinement of electrons upon exfoliation leads to unprecedented optical and electrical properties. Liquid exfoliation of layered crystals allows the production of suspensions of two-dimensional nanosheets, which can be formed into a range of structures. (A) MoS2 powder. (B) WS2 dispersed in surfactant solution


Science | 2009

Fabricating Genetically Engineered High-Power Lithium Ion Batteries Using Multiple Virus Genes

Yun Jung Lee; Hyunjung Yi; Woo-Jae Kim; Kisuk Kang; Dong Soo Yun; Michael S. Strano; Gerbrand Ceder; Angela M. Belcher

Viral Battery In developing materials for batteries, there is a trade-off between charge capacity, conductivity, and chemical stability. Nanostructured materials improve the conductivity for some resistive materials, but fabricating stable materials at nanometer-length scales is difficult. Harnessing their knowledge of viruses as toolkits for materials fabrication, Lee et al. (p. 1051; published online 2 April) modified two genes in the filamentous bacteriophage M13 to produce a virus with an affinity for nucleating amorphous iron phosphate along its length and for attaching carbon nanotubes at one of the ends. In nanostructured form, the amorphous iron phosphate produced a useful cathode material, while the carbon nanotubes formed a percolating network that significantly enhanced conductivity. A genetically modified virus is used to form an efficient cathodic battery material. Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li+) batteries, reducing material dimensions can boost Li+ ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate(a-FePO4) fused to the viral major coat protein. The virus clone with the greatest affinity toward SWNTs enabled power performance of a-FePO4 comparable to that of crystalline lithium iron phosphate (c-LiFePO4) and showed excellent capacity retention upon cycling at 1C. This environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.


ACS Nano | 2009

Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles

Hong Jin; Daniel A. Heller; Richa Sharma; Michael S. Strano

The cellular uptake and expulsion rates of length-fractionated single-walled carbon nanotubes (SWNT) from 130 to 660 nm in NIH-3T3 cells were measured via single particle tracking of their intrinsic photoluminescence. We develop a quantitative model to correlate endocytosis rate with nanoparticle geometry that accurately describes this data set and also literature results for Au nanoparticles. The model asserts that nanoparticles cluster on the cell membrane to form a size sufficient to generate a large enough enthalpic contribution via receptor ligand interactions to overcome the elastic energy and entropic barriers associated with vesicle formation. Interestingly, the endocytosis rate constant of SWNT (10(-3) min(-1)) is found to be nearly 1000 times that of Au nanoparticles (10(-6) min(-1)) but the recycling (exocytosis) rate constants are similar in magnitude (10(-4) to 10(-3) min(-1)) for poly(d,l-lactide-co-glycolide), SWNT, and Au nanoparticles across distinct cell lines. The total uptake of both SWNT and Au nanoparticles is maximal at a common radius of 25 nm when scaled using an effective capture dimension for membrane diffusion. The ability to understand and predict the cellular uptake of nanoparticles quantitatively should find utility in designing nanosystems with controlled toxicity, efficacy, and functionality.


Nano Letters | 2010

Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries

Richa Sharma; Joon Hyun Baik; Chrisantha J. Perera; Michael S. Strano

The reactivity of graphene and its various multilayers toward electron transfer chemistries with 4-nitrobenzene diazonium tetrafluoroborate is probed by Raman spectroscopy after reaction on-chip. Single graphene sheets are found to be almost 10 times more reactive than bi- or multilayers of graphene according to the relative disorder (D) peak in the Raman spectrum examined before and after chemical reaction in water. A model whereby electron puddles that shift the Dirac point locally to values below the Fermi level is consistent with the reactivity difference. Because the chemistry at the graphene edge is important for controlling its electronic properties, particularly in ribbon form, we have developed a spectroscopic test to examine the relative reactivity of graphene edges versus the bulk. We show, for the first time, that the reactivity of edges is at least two times higher than the reactivity of the bulk single graphene sheet, as supported by electron transfer theory. These differences in electron transfer rates may be important for selecting and manipulating graphitic materials on-chip.


Archive | 2007

Potential Applications of Carbon Nanotubes

Morinobu Endo; Michael S. Strano; Pulickel M. Ajayan

This review explores the state-of-the-art applications of various kindsof carbon nanotubes. We will address the uniqueness of nanotubes thatmakes them better than their competitors for specific applications. We willdiscuss several examples of the already existing commercial uses of nanotubesand then point out feasible nanotube applications for the near term (withinten years) and the long term (beyond ten years). In our discussions of theapplications, we will distinguish between the various kinds of nanotubesin play today, ranging from multiwall nanotubes having different degreesof perfection to the near-perfect molecular single-wall nanotubes. The lastdecade of research in this field points to several possible applications forthese materials; electronic devices and interconnects, field emission devices,electrochemical devices, such as supercapacitors and batteries, nanoscale sensors,electromechanical actuators, separation membranes, filled polymer composites,and drug-delivery systems are some of the possible applications that havebeen demonstrated in the laboratories. We further discuss the status of thisfield and point out the value-added applications that exist today versus therevolutionary applications that will ensue in the distant future. The opportunities,challenges and the major bottlenecks, including large-scale manufacturing fornanotube material, will be identified as we define the applications space fornanotubes. We will also consider some of the recent concerns regarding health,environment as well as handling and safety protocols for carbon nanotubes.


Nature Nanotechnology | 2011

Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices

Xiangnan Dang; Hyunjung Yi; Moon-Ho Ham; Jifa Qi; Dong Soo Yun; Rebecca Ladewski; Michael S. Strano; Paula T. Hammond; Angela M. Belcher

The performance of photovoltaic devices could be improved by using rationally designed nanocomposites with high electron mobility to efficiently collect photo-generated electrons. Single-walled carbon nanotubes exhibit very high electron mobility, but the incorporation of such nanotubes into nanocomposites to create efficient photovoltaic devices is challenging. Here, we report the synthesis of single-walled carbon nanotube-TiO(2) nanocrystal core-shell nanocomposites using a genetically engineered M13 virus as a template. By using the nanocomposites as photoanodes in dye-sensitized solar cells, we demonstrate that even small fractions of nanotubes improve the power conversion efficiency by increasing the electron collection efficiency. We also show that both the electronic type and degree of bundling of the nanotubes in the nanotube/TiO(2) complex are critical factors in determining device performance. With our approach, we achieve a power conversion efficiency in the dye-sensitized solar cells of 10.6%.


Nature Chemistry | 2012

Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

Qing Hua Wang; Zhong Jin; Ki Kang Kim; Andrew J. Hilmer; Geraldine L C Paulus; Chih-Jen Shih; Moon Ho Ham; Javier Sanchez-Yamagishi; Kenji Watanabe; Takashi Taniguchi; Jing Kong; Pablo Jarillo-Herrero; Michael S. Strano

Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO(2) and Al(2)O(3) (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.The chemical functionalization of graphene enables control over electronic properties and sensor recognition sites. However, its study is confounded by an unusually strong influence of the underlying substrate. In this paper, we show a stark difference in the rate of electron transfer chemistry with aryl diazonium salts on monolayer graphene supported on a broad range of substrates. Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The effect is contrary to expectations based on doping levels and can instead be described using a reactivity model accounting for substrate-induced electron-hole puddles in graphene. Raman spectroscopic mapping is used to characterize the effect of the substrates on graphene. Reactivity imprint lithography (RIL) is demonstrated as a technique for spatially patterning chemical groups on graphene by patterning the underlying substrate, and is applied to the covalent tethering of proteins on graphene.


Nano Letters | 2008

Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3 Cells

Hong Jin; Daniel A. Heller; Michael S. Strano

Over 10000 individual trajectories of nonphotobleaching single-walled carbon nanotubes (SWNT) were tracked as they are incorporated into and expelled from NIH-3T3 cells in real time on a perfusion microscope stage. An analysis of mean square displacement allows the complete construction of the mechanistic steps involved from single duration experiments. We observe the first conclusive evidence of SWNT exocytosis and show that the rate closely matches the endocytosis rate with negligible temporal offset. We identify and study the endocytosis and exocytosis pathway that leads to the previously observed aggregation and accumulation of SWNT within the cells.


Physical Review B | 2005

Exciton binding energies in carbon nanotubes from two-photon photoluminescence

Janina Maultzsch; R. Pomraenke; Stephanie Reich; E. Chang; Deborah Prezzi; Alice Ruini; Elisa Molinari; Michael S. Strano; C. Thomsen; Christoph Lienau

Excitonic effects in the linear and nonlinear optical properties of single-walled carbon nanotubes are manifested by photoluminescence excitation experiments and ab initio calculations. One- and two-photon spectra showed a series of exciton states; their energy splitting is the fingerprint of excitonic interactions in carbon nanotubes. By ab initio calculations we determine the energies, wave functions, and symmetries of the excitonic states. Combining experiment and theory we find binding energies of

Collaboration


Dive into the Michael S. Strano's collaboration.

Top Co-Authors

Avatar

Paul W. Barone

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingqing Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nigel F. Reuel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Qing Hua Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ardemis A. Boghossian

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Hilmer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel Blankschtein

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge