Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Wyand is active.

Publication


Featured researches published by Michael S. Wyand.


Journal of Clinical Oncology | 2010

Overall Survival Analysis of a Phase II Randomized Controlled Trial of a Poxviral-Based PSA-Targeted Immunotherapy in Metastatic Castration-Resistant Prostate Cancer

Philip W. Kantoff; Thomas J. Schuetz; Brent A. Blumenstein; L. Michael Glode; David L. Bilhartz; Michael S. Wyand; Kelledy Manson; Dennis Panicali; Reiner Laus; Jeffrey Schlom; William L. Dahut; Philip M. Arlen; James L. Gulley; Wayne R. Godfrey

PURPOSE Therapeutic prostate-specific antigen (PSA) -targeted poxviral vaccines for prostate cancer have been well tolerated. PROSTVAC-VF treatment was evaluated for safety and for prolongation of progression-free survival (PFS) and overall survival (OS) in a randomized, controlled, and blinded phase II study. PATIENTS AND METHODS In total, 125 patients were randomly assigned in a multicenter trial of vaccination series. Eligible patients had minimally symptomatic castration-resistant metastatic prostate cancer (mCRPC). PROSTVAC-VF comprises two recombinant viral vectors, each encoding transgenes for PSA, and three immune costimulatory molecules (B7.1, ICAM-1, and LFA-3). Vaccinia-based vector was used for priming followed by six planned fowlpox-based vector boosts. Patients were allocated (2:1) to PROSTVAC-VF plus granulocyte-macrophage colony-stimulating factor or to control empty vectors plus saline injections. RESULTS Eighty-two patients received PROSTVAC-VF and 40 received control vectors. Patient characteristics were similar in both groups. The primary end point was PFS, which was similar in the two groups (P = .6). However, at 3 years post study, PROSTVAC-VF patients had a better OS with 25 (30%) of 82 alive versus 7 (17%) of 40 controls, longer median survival by 8.5 months (25.1 v 16.6 months for controls), an estimated hazard ratio of 0.56 (95% CI, 0.37 to 0.85), and stratified log-rank P = .0061. CONCLUSION PROSTVAC-VF immunotherapy was well tolerated and associated with a 44% reduction in the death rate and an 8.5-month improvement in median OS in men with mCRPC. These provocative data provide preliminary evidence of clinically meaningful benefit but need to be confirmed in a larger phase III study.


Nature Medicine | 1999

Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations.

Harriet L. Robinson; David C. Montefiori; Johnson Rp; Kelledy Manson; M. L. Kalish; J. D. Lifson; Tahir A. Rizvi; Shan Lu; Shiu-Lok Hu; Gail P. Mazzara; Dennis Panicali; James G. Herndon; Glickman R; Candido Ma; Lydy Sl; Michael S. Wyand; Harold M. McClure

Eight different protocols were compared for their ability to raise protection against immunodeficiency virus challenges in rhesus macaques. The most promising containment of challenge infections was achieved by intradermal DNA priming followed by recombinant fowl pox virus booster immunizations. This containment did not require neutralizing antibody and was active for a series of challenges ending with a highly virulent virus with a primary isolate envelope heterologous to the immunizing strain.


Journal of Virology | 2000

Simian Immunodeficiency Virus (SIV) gag DNA-Vaccinated Rhesus Monkeys Develop Secondary Cytotoxic T-Lymphocyte Responses and Control Viral Replication after Pathogenic SIV Infection

Michael A. Egan; William A. Charini; Marcelo J. Kuroda; Jörn E. Schmitz; Paul Racz; Klara Tenner-Racz; Kelledy Manson; Michael S. Wyand; Michelle A. Lifton; Christie E. Nickerson; Tong-Ming Fu; John W. Shiver; Norman L. Letvin

ABSTRACT The potential contribution of a plasmid DNA construct to vaccine-elicited protective immunity was explored in the simian immunodeficiency virus (SIV)/macaque model of AIDS. Making use of soluble major histocompatibility class I/peptide tetramers and peptide-specific killing assays to monitor CD8+T-lymphocyte responses to a dominant SIV Gag epitope in genetically selected rhesus monkeys, a codon-optimized SIV gag DNA vaccine construct was shown to elicit a high-frequency SIV-specific cytotoxic T-lymphocyte (CTL) response. This CTL response was demonstrable in both peripheral blood and lymph node lymphocytes. Following an intravenous challenge with the highly pathogenic viral isolate SIVsm E660, these vaccinated monkeys developed a secondary CTL response that arose with more rapid kinetics and reached a higher frequency than did the postchallenge CTL response in control plasmid-vaccinated monkeys. While peak plasma SIV RNA levels were comparable in the experimentally and control-vaccinated monkeys during the period of primary infection, the gag plasmid DNA-vaccinated monkeys demonstrated better containment of viral replication by 50 days following SIV challenge. These findings indicate that a plasmid DNA vaccine can elicit SIV-specific CTL responses in rhesus monkeys, and this vaccine-elicited immunity can facilitate the generation of secondary CTL responses and control of viral replication following a pathogenic SIV challenge. These observations suggest that plasmid DNA may prove a useful component of a human immunodeficiency virus type 1 vaccine.


Journal of Virology | 2005

Effect of CD8+ Lymphocyte Depletion on Virus Containment after Simian Immunodeficiency Virus SIVmac251 Challenge of Live Attenuated SIVmac239Δ3-Vaccinated Rhesus Macaques

Jörn E. Schmitz; R. Paul Johnson; Harold M. McClure; Kelledy Manson; Michael S. Wyand; Marcelo J. Kuroda; Michelle A. Lifton; Rajinder Khunkhun; Kimberly J. McEvers; Jacqueline Gillis; Michael Piatak; Jeffrey D. Lifson; Gudrun Großschupff; Paul Racz; Klara Tenner-Racz; E. Peter Rieber; Kristine Kuus-Reichel; Rebecca Gelman; Norman L. Letvin; David C. Montefiori; Ruth M. Ruprecht; Ronald C. Desrosiers; Keith A. Reimann

ABSTRACT Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Δ3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01− animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01− animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.


Journal of Medical Primatology | 1999

Antigen‐specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN‐γ, IL‐12, or IL‐18 gene adjuvants

Jong J. Kim; Liesl K. Nottingham; Anthony Tsai; Daniel J. Lee; Henry C. Maguire; Jim Oh; Tzvete Dentchev; Kelledy Manson; Michael S. Wyand; Michael G. Agadjanyan; Kenneth E. Ugen; David B. Weiner

Abstract: DNA or nucleic acid immunization has been shown to induce both antigen‐specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T‐helper (Th)1‐type cellular responses, we investigated the co‐delivery of inteferon (IFN)‐γ, interleukin (IL)‐12, and IL‐18 genes along with DNA vaccine constructs. We observed that both antigen‐specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non‐human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co‐immunization of IFN‐γ and IL‐18 in macaques enhanced the level of antigen‐specific antibody responses. Similarly, co‐delivery of IL‐12 and IL‐18 also enhanced the level of antigen‐specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.


Journal of Virology | 2000

Modulation of Antigen-Specific Humoral Responses in Rhesus Macaques by Using Cytokine cDNAs as DNA Vaccine Adjuvants

Jong J. Kim; Joo-Sung Yang; Thomas C. VanCott; Daniel J. Lee; Kelledy Manson; Michael S. Wyand; Jean D. Boyer; Kenneth E. Ugen; David B. Weiner

ABSTRACT An important limitation of DNA immunization in nonhuman primates is the difficulty in generating high levels of antigen-specific antibody responses; strategies to enhance the level of immune responses to DNA immunization may be important in the further development of this vaccine strategy for humans. We approached this issue by testing the ability of molecular adjuvants to enhance the levels of immune responses generated by multicomponent DNA vaccines in rhesus macaques. Rhesus macaques were coimmunized intramuscularly with expression plasmids bearing genes encoding Th1 (interleukin 2 [IL-2] and gamma interferon)- or Th2 (IL-4)-type cytokines and DNA vaccine constructs encoding human immunodeficiency virus Env and Rev and simian immunodeficiency virus Gag and Pol proteins. We observed that the cytokine gene adjuvants (especially IL-2 and IL-4) significantly enhanced antigen-specific humoral immune responses in the rhesus macaque model. These results support the assumption that antigen-specific responses can be engineered to a higher and presumably more desirable level in rhesus macaques by genetic adjuvants.


Journal of Virology | 2003

Prevention of Disease Induced by a Partially Heterologous AIDS Virus in Rhesus Monkeys by Using an Adjuvanted Multicomponent Protein Vaccine

Gerald Voss; Kelledy Manson; David C. Montefiori; David I. Watkins; Jonathan L. Heeney; Michael S. Wyand; Joe Cohen; Claudine Bruck

ABSTRACT Recombinant protein subunit AIDS vaccines have been based predominantly on the virus envelope protein. Such vaccines elicit neutralizing antibody responses that can provide type-specific sterilizing immunity, but in most cases do not confer protection against divergent viruses. In this report we demonstrate that a multiantigen subunit protein vaccine was able to prevent the development of disease induced in rhesus monkeys by a partially heterologous AIDS virus. The vaccine was composed of recombinant human immunodeficiency virus type 1 (HIV-1) gp120, NefTat fusion protein, and simian immunodeficiency virus (SIV) Nef formulated in the clinically tested adjuvant AS02A. Upon challenge of genetically unselected rhesus monkeys with the highly pathogenic and partially heterologous SIV/HIV strain SHIV89.6p the vaccine was able to reduce virus load and protect the animals from a decline in CD4-positive cells. Furthermore, vaccination prevented the development of AIDS for more than 2.5 years. The combination of the regulatory proteins Nef and Tat together with the structural protein gp120 was required for vaccine efficacy.


Antimicrobial Agents and Chemotherapy | 2000

Effect of a Cellulose Acetate Phthalate Topical Cream on Vaginal Transmission of Simian Immunodeficiency Virus in Rhesus Monkeys

Kelledy Manson; Michael S. Wyand; Christopher J. Miller; A. R. Neurath

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection continues to spread in developing countries, mostly through heterosexual transmission. The development of a safe and cost-effective topical microbicide, effective against a range of STDs including HIV-1, would greatly impact the ongoing epidemic. When formulated in a vehicle, a micronized form of cellulose acetate phthalate (CAP), which is an inactive pharmaceutical excipient, has been shown to inactivate HIV-1, herpes simplex virus types 1 and 2, cytomegalovirus, Neisseria gonorrhoeae, Trichomonas vaginalis, Haemophilus ducreyi, and Chlamydia trachomatis in vitro. Formulated CAP was also shown to be effective against herpes simplex virus type 2 in vivo. Here we show that a formulation of CAP protected four of six rhesus monkeys from vaginal infection with simian immunodeficiency virus. Thus, CAP may be a candidate for use as a topical microbicide for preventing HIV-1 infection in humans.


Journal of Acquired Immune Deficiency Syndromes | 1996

Utility of SHIV for testing HIV-1 vaccine candidates in macaques

Lu Y; Salvato Ms; Pauza Cd; John Li; Joseph Sodroski; Kelledy Manson; Michael S. Wyand; Norman L. Letvin; Jenkins S; Touzjian N; Chutkowski C; Kushner N; LeFaile M; Payne Lg; Roberts B

SUMMARY Intravenous injection of SHIV (simian/human immunodeficiency virus, chimeric virus) into rhesus macaques resulted in a viremia in peripheral blood lymphocytes (PBL) and the generation of anti-HIV-1 (human immunodeficiency virus type 1) envelope immune responses. A challenge stock of a SHIV containing HIV-1 HXBc2 envelope glycoproteins was prepared from infected rhesus monkey peripheral blood mononuclear cells (PBMC). The minimum animal infectious dose of the SHIV stock was determined and used in a challenge experiment to test protection. The vaccination of two rhesus monkeys with whole inactivated HIV-1 plus polydicarboxylatophenoxy phosphazene (PCPP) as the adjuvant protected the animals from becoming infected by a SHIV challenge. This experiment demonstrated for the first time that monkeys immunized with HIV-1 antigens can be protected against an HIV-1 envelope-containing virus. As the challenge virus was prepared from monkey PBMC, human antigens were unlikely to be involved in the protection. Protection of rhesus monkeys from SHIV challenge may help,define protective immune responses stimulated by HIV-1 vaccine candidates.


Oncogene | 2001

Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen.

J. Joseph Kim; Joo-Sung Yang; Liesl K. Nottingham; Waixing Tang; Kesen Dang; Kelledy Manson; Michael S. Wyand; Darren M. Wilson; David B. Weiner

Prostate specific antigen (PSA) is a widely used marker for prostate cancer, which is secreted by normal prostate cells at low levels, but is produced more substantially by cancer cells. We have previously reported on the use of a DNA vaccine construct that encodes for human PSA gene to elicit host immune responses against cells producing PSA. DNA immunization strategy delivers DNA constructs encoding for a specific immunogen into the host, who becomes the in vivo protein source for the production of antigen. This antigen then is the focus of the resulting immune response. In this study, we examine the induction of immune responses and safety profiles in rhesus macaques immunized with DNA-based PSA vaccine. We observed induction of PSA-specific humoral response as well as positive PSA-specific lymphoproliferative (LPA) response in the vaccinated macaques. We also observed that the stimulated T cells from the PSA-immunized rhesus macaques produced higher levels of Th1 type cytokine IFN-γ than the control vector immunized animals. On the other hand, DNA immunization did not result in any adverse effects in the immunized macaques, as indicated by complete blood counts, leukocyte differentials and hepatic and renal chemistries. The macaques appeared healthy, without any physical signs of toxicity throughout the observation period. In addition, we did not observe any adverse effect on the vaccination site. The apparent safety and immunogenecity of DNA immunization in this study suggest that further evaluation of this vaccination strategy is warranted.

Collaboration


Dive into the Michael S. Wyand's collaboration.

Top Co-Authors

Avatar

Kelledy Manson

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman L. Letvin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge