Michael Sattler
Center for Integrated Protein Science Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Sattler.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Giambattista Guaitoli; Francesco Raimondi; Bernd K. Gilsbach; Yacob Gómez-Llorente; Egon Deyaert; Fabiana Renzi; Xianting Li; Adam Schaffner; Pravin Kumar Ankush Jagtap; Karsten Boldt; Felix von Zweydorf; Katja Gotthardt; Donald D. Lorimer; Zhenyu Yue; Alex B. Burgin; Nebojsa Janjic; Michael Sattler; Wim Versées; Marius Ueffing; Iban Ubarretxena-Belandia; Arjan Kortholt; Christian Johannes Gloeckner
Significance Leucine-rich repeat kinase 2 (LRRK2) represents a promising drug target for treatment and prevention of Parkinson’s disease (PD), because mutations in LRRK2 are the most common cause of Mendelian forms of the disease. PD-associated LRRK2 variants show decreased GTPase and increased kinase activity. By integrating multiple experimental inputs provided by chemical cross-linking, small-angle X-ray scattering, and a negative-stain EM map, we present, to our knowledge, the first structural model of the full-length LRRK2 dimer. The model reveals a compact folding of the LRRK2 dimer with multiple domain–domain interactions that might be involved in the regulation of LRRK2 enzymatic properties. Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson’s disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity—together with the LRR domain—to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.
Nature Communications | 2016
Mikael Feracci; Jn Foot; Sushma-Nagaraja Grellscheid; Marina Danilenko; R Stehle; O Gonchar; Hyun-Seo Kang; Caroline Dalgliesh; Nh Meyer; Yilei Liu; Albert Lahat; Michael Sattler; Ian C. Eperon; David J. Elliott; Cyril Dominguez
Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.
Nature Structural & Molecular Biology | 2016
Bettina K. Zierer; Martin Rübbelke; Franziska Tippel; Tobias Madl; Florian H. Schopf; Daniel A. Rutz; Klaus Richter; Michael Sattler; Johannes Buchner
Hsp90 couples ATP hydrolysis to large conformational changes essential for activation of client proteins. The structural transitions involve dimerization of the N-terminal domains and formation of closed states involving the N-terminal and middle domains. Here, we used Hsp90 mutants that modulate ATPase activity and biological function as probes to address the importance of conformational cycling for Hsp90 activity. We found no correlation between the speed of ATP turnover and the in vivo activity of Hsp90: some mutants with almost normal ATPase activity were lethal, and some mutants with lower or undetectable ATPase activity were viable. Our analysis showed that it is crucial for Hsp90 to attain and spend time in certain conformational states: a certain dwell time in open states is required for optimal processing of client proteins, whereas a prolonged population of closed states has negative effects. Thus, the timing of conformational transitions is crucial for Hsp90 function and not cycle speed.
Nature Communications | 2016
Robert Janowski; Gitta A. Heinz; Andreas Schlundt; Nina Wommelsdorf; Sven Brenner; Andreas Gruber; Michael Blank; Thorsten Buch; Raymund Buhmann; Mihaela Zavolan; Dierk Niessing; Vigo Heissmeyer; Michael Sattler
The RNA-binding protein Roquin is required to prevent autoimmunity. Roquin controls T-helper cell activation and differentiation by limiting the induced expression of costimulatory receptors such as tumor necrosis factor receptor superfamily 4 (Tnfrs4 or Ox40). A constitutive decay element (CDE) with a characteristic triloop hairpin was previously shown to be recognized by Roquin. Here we use SELEX assays to identify a novel U-rich hexaloop motif, representing an alternative decay element (ADE). Crystal structures and NMR data show that the Roquin-1 ROQ domain recognizes hexaloops in the SELEX-derived ADE and in an ADE-like variant present in the Ox40 3′-UTR with identical binding modes. In cells, ADE-like and CDE-like motifs cooperate in the repression of Ox40 by Roquin. Our data reveal an unexpected recognition of hexaloop cis elements for the posttranscriptional regulation of target messenger RNAs by Roquin.
Biochimica et Biophysica Acta | 2016
Leonidas Emmanouilidis; Mohanraj Gopalswamy; Daniel M. Passon; Matthias Wilmanns; Michael Sattler
The peroxisomal proteins (peroxins) that mediate the import of peroxisomal matrix proteins have been identified. Recently, the purification of a functional peroxisomal translocon has been reported. However, the molecular details of the import pathways and the mechanisms by which the cargo is translocated into the lumen of the organelle are still poorly understood. Structural studies have begun to provide insight into molecular mechanisms of peroxisomal import pathways for cargo proteins that harbor peroxisomal targeting signals, PTS1 and PTS2, at their C- and N-termini, respectively. So far structures have been reported for binary or tertiary protein-protein interfaces, and highlight the role of intrinsically disordered regions for these interactions. Here, we provide an overview of the currently available structural biology of peroxisomal import pathways. Current challenges and future perspectives of the structural biology of peroxisomal protein translocation are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Lena Voith von Voithenberg; Carolina Sánchez-Rico; Hyun-Seo Kang; Tobias Madl; Katia Zanier; Anders Barth; Lisa R. Warner; Michael Sattler; Don C. Lamb
Significance The splicing of human pre-mRNAs is tightly controlled and regulated during the assembly of the spliceosome onto pre-mRNA introns. Recognition of regulatory RNA sequence motifs by splicing factors is an essential early step during spliceosome assembly. We combine single-pair FRET and NMR to show that the recognition of the 3′ splice site in pre-mRNA introns by the essential heterodimeric splicing factor U2 auxiliary factor (U2AF) involves conformational dynamics and population shifts of its RNA binding domains between open and closed conformations. Unexpectedly, the small subunit U2AF35 facilitates the recognition of weak splice sites by a population shift of the RNA binding domains of U2AF65 toward the open conformation. Notably, disease-linked mutations in U2AF65 do not affect RNA or U2AF35 binding. An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3′ splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3′ splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein–RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3′ splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants.
Nature Communications | 2016
Xiangdong Zheng; Anand Ramani; Komal Soni; Marco Gottardo; Shuangping Zheng; Li Ming Gooi; Wenjing Li; Shan Feng; Aruljothi Mariappan; Arpit Wason; Per O. Widlund; Andrei Pozniakovsky; Ina Poser; Haiteng Deng; Guangshuo Ou; Maria Giovanna Riparbelli; Callaini Giuliano; Anthony A. Hyman; Michael Sattler; Jay Gopalakrishnan; Haitao Li
Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubules α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAPF375A, with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAPEE343RR that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a ‘clutch-like mechanism.
PLOS ONE | 2016
Bomi Jung; Daniela Padula; Ingo Burtscher; Cedric Landerer; Dominik Lutter; Fabian J. Theis; Ana C. Messias; Arie Geerlof; Michael Sattler; Elisabeth Kremmer; Karsten Boldt; Marius Ueffing; Heiko Lickert
The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation.
Journal of the American Chemical Society | 2016
Azzurra Carlon; Enrico Ravera; Janosch Hennig; Giacomo Parigi; Michael Sattler; Claudio Luchinat
Integrated experimental approaches play an increasingly important role in structural biology, taking advantage of the complementary information provided by different techniques. In particular, the combination of NMR data with X-ray diffraction patterns may provide accurate and precise information about local conformations not available from average-resolution X-ray structures alone. Here, we refined the structure of a ternary protein-protein-RNA complex comprising three domains, Sxl and Unr, bound to a single-stranded region derived in the msl2 mRNA. The joint X-ray and NMR refinement reveals that-despite the poor quality of the fit found for the original structural model-the NMR data can be largely accommodated within the uncertainty in the atom positioning (structural noise) from the primary X-ray data and that the overall domain arrangements and binding interfaces are preserved on passing from the crystalline state to the solution. The refinement highlights local conformational differences, which provide additional information on specific features of the structure. For example, conformational dynamics and heterogeneity observed at the interface between the CSD1 and the Sxl protein components in the ternary complex are revealed by the combination of NMR and crystallographic data. The joint refinement protocol offers unique opportunities to detect structural differences arising from various experimental conditions and reveals static or dynamic differences in the conformation of the biomolecule between the solution and the crystals.
eLife | 2016
André Mourão; Sophie Bonnal; Komal Soni; Lisa R. Warner; Rémy Bordonné; Juan Valcárcel; Michael Sattler
The multi-domain splicing factor RBM5 regulates the balance between antagonistic isoforms of the apoptosis-control genes FAS/CD95, Caspase-2 and AID. An OCRE (OCtamer REpeat of aromatic residues) domain found in RBM5 is important for alternative splicing regulation and mediates interactions with components of the U4/U6.U5 tri-snRNP. We show that the RBM5 OCRE domain adopts a unique β–sheet fold. NMR and biochemical experiments demonstrate that the OCRE domain directly binds to the proline-rich C-terminal tail of the essential snRNP core proteins SmN/B/B’. The NMR structure of an OCRE-SmN peptide complex reveals a specific recognition of poly-proline helical motifs in SmN/B/B’. Mutation of conserved aromatic residues impairs binding to the Sm proteins in vitro and compromises RBM5-mediated alternative splicing regulation of FAS/CD95. Thus, RBM5 OCRE represents a poly-proline recognition domain that mediates critical interactions with the C-terminal tail of the spliceosomal SmN/B/B’ proteins in FAS/CD95 alternative splicing regulation.