Michael Schmiedeberg
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Schmiedeberg.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jules Mikhael; Michael Schmiedeberg; Sebastian Rausch; Johannes Roth; Holger Stark; Clemens Bechinger
Quasicrystals provide a fascinating class of materials with intriguing properties. Despite a strong potential for numerous technical applications, the conditions under which quasicrystals form are still poorly understood. Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry but no single example with 7- or 9-fold symmetry has ever been observed. Here we report on geometrical constraints which impede the formation of quasicrystals with certain symmetries in a colloidal model system. Experimentally, colloidal quasicrystals are created by subjecting micron-sized particles to two-dimensional quasiperiodic potential landscapes created by n = 5 or seven laser beams. Our results clearly demonstrate that quasicrystalline order is much easier established for n = 5 compared to n = 7. With increasing laser intensity we observe that the colloids first adopt quasiperiodic order at local areas which then laterally grow until an extended quasicrystalline layer forms. As nucleation sites where quasiperiodicity originates, we identify highly symmetric motifs in the laser pattern. We find that their density strongly varies with n and surprisingly is smallest exactly for those quasicrystalline symmetries which have never been observed in atomic systems. Since such high-symmetry motifs also exist in atomic quasicrystals where they act as preferential adsorption sites, this suggests that it is indeed the deficiency of such motifs which accounts for the absence of materials with e.g., 7-fold symmetry.
Physical Review Letters | 2014
C. V. Achim; Michael Schmiedeberg; Hartmut Löwen
The growth of quasicrystals, i.e., aperiodic structures with long-range order, seeded from the melt is investigated using a dynamical phase field crystal model. Depending on the thermodynamic conditions, two different growth modes are detected, namely defect-free growth of the stable quasicrystal and a mode dominated by phasonic flips which are incorporated as local defects into the grown structure such that random tilinglike ordering emerges. The latter growth mode is unique to quasicrystals and can be verified in experiments on one-component mesoscopic systems.
Soft Matter | 2012
Richard D. L. Hanes; Cécile Dalle-Ferrier; Michael Schmiedeberg; Matthew C. Jenkins; Stefan U. Egelhaaf
Individual colloidal particles have been studied experimentally in a one dimensional random potential with energies that follow a Gaussian distribution. This rough, noise-like potential has been realised using a holographic optical set-up, which allows the width of the distribution to be varied. For different widths, the particle trajectories were followed and the particle dynamics characterised by, for example, the mean square displacement, non-Gaussian parameter, van Hove function, time-dependent diffusion coefficient and residence time distribution. The values obtained for these observables are consistent with the static properties of the system, in particular the barrier height distribution, which was obtained by a detailed characterisation of the tweezer-like set-up. The dynamics display three distinct behaviours: at short times normal diffusion, subsequently an extended regime of localisation within the different minima of the potential and finally a very slow approach towards long-time diffusive behaviour, for which diffusion coefficients consistent with theoretical predictions have been found.
European Physical Journal E | 2007
Michael Schmiedeberg; Johannes Roth; Holger Stark
Abstract.We study the Brownian motion of an ensemble of single colloidal particles in a random square and a quasicrystalline potential when they start from non-equlibrium. For both potentials, Brownian dynamics simulations reveal a widespread subdiffusive regime before the diffusive long-time limit is reached in thermal equilibrium. We develop a random trap model based on a distribution for the depths of trapping sites that reproduces the results of the simulations in detail. Especially, it gives analytic formulas for the long-time diffusion constant and the relaxation time into the diffusive regime. Aside from detailed differences, our work demonstrates that quasicrystalline potentials can be used to mimic aspects of random potentials.
Journal of Physics: Condensed Matter | 2012
Michael Schmiedeberg; Holger Stark
Quasicrystals are aperiodic structures with long-range orientational order. Unlike crystals, quasicrystals can, in principle, possess any non-crystallographic rotational symmetry. However, only a few of these rotational symmetries have been observed. By using Monte Carlo simulations of colloidal particles in laser interference patterns with quasicrystalline symmetry, we compare the onset of quasicrystalline order for different rotational symmetries in two dimensions. We find that quasicrystals with 5-, 8-, 10-, and 12-fold rotational axes can be induced with lower laser intensities than quasicrystals with other non-crystallographic rotational symmetries. We relate this finding to the number of local symmetry centers in the respective interference patterns.
Biophysical Journal | 2014
Vasily Zaburdaev; Nicolas Biais; Michael Schmiedeberg; Jens Eriksson; Ann-Beth Jonsson; Michael P. Sheetz; David A. Weitz
Neisseria gonorrheae bacteria are the causative agent of the second most common sexually transmitted infection in the world. The bacteria move on a surface by means of twitching motility. Their movement is mediated by multiple long and flexible filaments, called type IV pili, that extend from the cell body, attach to the surface, and retract, thus generating a pulling force. Moving cells also use pili to aggregate and form microcolonies. However, the mechanism by which the pili surrounding the cell body work together to propel bacteria remains unclear. Understanding this process will help describe the motility of N. gonorrheae bacteria, and thus the dissemination of the disease which they cause. In this article we track individual twitching cells and observe that their trajectories consist of alternating moving and pausing intervals, while the cell body is preferably oriented with its wide side toward the direction of motion. Based on these data, we propose a model for the collective pili operation of N. gonorrheae bacteria that explains the experimentally observed behavior. Individual pili function independently but can lead to coordinated motion or pausing via the force balance. The geometry of the cell defines its orientation during motion. We show that by changing pili substrate interactions, the motility pattern can be altered in a predictable way. Although the model proposed is tangibly simple, it still has sufficient robustness to incorporate further advanced pili features and various cell geometries to describe other bacteria that employ pili to move on surfaces.
EPL | 2011
Michael Schmiedeberg; Thomas K. Haxton; Sidney R. Nagel; Andrea J. Liu
We show that the dynamics of soft-sphere systems with purely repulsive interactions can be described by introducing an effective hard-sphere diameter determined using the Andersen-Weeks-Chandler approximation. We find that this approximation, known to describe static properties of liquids, also gives a good description of a dynamical quantity, the relaxation time, even in the vicinity of the glass transition.
Physical Review E | 2015
D. Froemberg; Michael Schmiedeberg; Eli Barkai; Vasily Zaburdaev
We propose an analytical method to determine the shape of density profiles in the asymptotic long-time limit for a broad class of coupled continuous-time random walks which operate in the ballistic regime. In particular, we show that different scenarios of performing a random-walk step, via making an instantaneous jump penalized by a proper waiting time or via moving with a constant speed, dramatically effect the corresponding propagators, despite the fact that the end points of the steps are identical. Furthermore, if the speed during each step of the random walk is itself a random variable, its distribution gets clearly reflected in the asymptotic density of random walkers. These features are in contrast with more standard nonballistic random walks.
Nature Communications | 2016
Matthias Kohl; Ronja Capellmann; Marco Laurati; Stefan U. Egelhaaf; Michael Schmiedeberg
The macroscopic properties of gels arise from their slow dynamics and load-bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy experiments and simulations of gel-forming colloid–polymer mixtures. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system-spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation denotes a universality class of transitions. Our study hence connects gel formation to a well-developed theoretical framework, which now can be exploited to achieve a detailed understanding of arrested gels.
European Physical Journal E | 2010
Michael Schmiedeberg; Jules Mikhael; Sebastian Rausch; Johannes Roth; Laurent Helden; Clemens Bechinger; Holger Stark
Abstract.Two-dimensional colloidal suspensions subjected to laser interference patterns with decagonal symmetry can form an Archimedean-like tiling phase where rows of squares and triangles order aperiodically along one direction (J. Mikhael et al., Nature 454, 501 (2008)). In experiments as well as in Monte Carlo and Brownian dynamics simulations, we identify a similar phase when the laser field possesses tetradecagonal symmetry. We characterize the structure of both Archimedean-like tilings in detail and point out how the tilings differ from each other. Furthermore, we also estimate specific particle densities where the Archimedean-like tiling phases occur. Finally, using Brownian dynamics simulations we demonstrate how phasonic distortions of the decagonal laser field influence the Archimedean-like tiling. In particular, the domain size of the tiling can be enlarged by phasonic drifts and constant gradients in the phasonic displacement. We demonstrate that the latter occurs when the interfering laser beams are not ideally adjusted.