Michael Schroda
Kaiserslautern University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Schroda.
The Plant Cell | 1999
Michael Schroda; Olivier Vallon; Francis-André Wollman; Christoph F. Beck
Dark-grown Chlamydomonas reinhardtii cultures that were illuminated at low fluence rates before exposure to high-light conditions exhibited a faster rate of recovery from photoinhibition than did dark-grown cells that were directly exposed to photoinhibitory conditions. This pretreatment has been shown to induce the expression of several nuclear heat shock protein 70 (HSP70) genes, including HSP70B, encoding a chloroplast-localized chaperone. To investigate a possible role of plastidic HSP70B in photoprotection and repair of photosystem II, which is the major target of photoinhibition, we have constructed strains overexpressing or underexpressing HSP70B. The effect of light stress on photosystem II in nuclear transformants harboring HSP70B in the sense or antisense orientation was monitored by measuring variable fluorescence, flash-induced charge separation, and relative amounts of various photosystem II polypeptides. Underexpression of HSP70B caused an increased light sensitivity of photosystem II, whereas overexpression of HSP70B had a protective effect. Furthermore, the reactivation of photosystem II after photoinhibition was enhanced in the HSP70B-overexpressing strain when compared with the wild type, both in the presence or absence of synthesis of chloroplast-encoded proteins. Therefore, HSP70B may participate in vivo both in the molecular protection of the photosystem II reaction centers during photoinhibition and in the process of photosystem II repair.
The Plant Cell | 2014
Stefan Schmollinger; Timo Mühlhaus; Nanette R. Boyle; Ian K. Blaby; David Casero; Tabea Mettler; Jeffrey L. Moseley; Janette Kropat; Frederik Sommer; Daniela Strenkert; Dorothea Hemme; Matteo Pellegrini; Arthur R. Grossman; Mark Stitt; Michael Schroda; Sabeeha S. Merchant
This work examines the mechanisms by which Chlamydomonas reinhardtii copes with nitrogen (N) limitation, finding transcriptomic and proteomic changes in multiple metabolic pathways and identifying an N-sparing mechanism that prioritizes respiratory metabolism and shifts the proteomic balance toward proteins with lower N contents, a result with implications for engineering of N-use efficiency. Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency.
Current Genetics | 2006
Michael Schroda
The generation of a comprehensive EST library and the sequencing of its genome set the stage for reverse genetics approaches in Chlamydomonas reinhardtii. However, these also require tools for the specific downregulation of target gene expression. Consequently, a large number of diverse constructs were developed aimed at reducing target gene expression in Chlamydomonas via the stable expression of antisense or inverted repeat-containing RNA. Double-stranded RNA (dsRNA) generated by the annealing of antisense and sense RNAs or by hairpin formation of an inverted repeat, feeds into the RNA silencing pathway. In this pathway, dsRNA is cleaved into ~25-bp small interfering RNAs (siRNAs) by the endonuclease Dicer. One of the two complementary strands of a siRNA is then loaded onto an Argonaute-like protein present as core component within larger complexes. Guided by this single-stranded RNA, the Argonaute-like protein either detects homologous transcripts and cleaves these endonucleolytically, or initiates transcriptional gene silencing. This article summarizes current information derived mainly from the Chlamydomonas genome project on components that are assumed to be involved in RNA silencing mechanisms in Chlamydomonas. Furthermore, all approaches employed in Chlamydomonas to date to downregulate target gene expression by antisense or inverted repeat constructs are reviewed and discussed critically.
Photosynthesis Research | 2004
Michael Schroda
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.
The Plant Cell | 2001
Michael Schroda; Olivier Vallon; Julian P. Whitelegge; Christoph F. Beck; Francis-André Wollman
In eubacteria and mitochondria, Hsp70 chaperone activity is controlled by the nucleotide exchange factor GrpE. We have identified the chloroplastic GrpE homolog of Chlamydomonas, CGE1, as an ∼26-kD protein coimmunoprecipitating with the stromal HSP70B protein. When expressed in Escherichia coli, CGE1 can functionally replace GrpE and interacts physically with DnaK. CGE1 is encoded by a single-copy gene that is induced strongly by heat shock and slightly by light. Alternative splicing generates two isoforms that differ only by two residues in the N-terminal part. The larger form is synthesized preferentially during heat shock, whereas the smaller one dominates at lower temperatures. Fractions of both HSP70B and CGE1 associate with chloroplast membranes in an ATP-sensitive manner. By colorless native PAGE and pulse labeling, CGE1 monomers were found to assemble rapidly into dimers and tetramers. In addition, CGE1 was found to form ATP-sensitive complexes with HSP70B of ∼230 and ∼120 kD, the latter increasing dramatically after heat shock.
Journal of Biological Chemistry | 2008
Laure Michelet; Mirko Zaffagnini; Hélène Vanacker; Pierre Maréchal; Christophe Marchand; Michael Schroda; Stéphane D. Lemaire; Paulette Decottignies
Glutathionylation is the major form of S-thiolation in cells. This reversible redox post-translational modification consists of the formation of a mixed disulfide between a free thiol on a protein and a molecule of glutathione. This recently described modification, which is considered to occur under oxidative stress, can protect cysteine residues from irreversible oxidation, and alter positively or negatively the activity of diverse proteins. This modification and its targets have been mainly studied in non-photosynthetic organisms so far. We report here the first proteomic approach performed in vivo on photosynthetically competent cells, using the eukaryotic unicellular green alga Chlamydomonas reinhardtii with radiolabeled [35S]cysteine to label the glutathione pool and diamide as oxidant. This method allowed the identification of 25 targets, mainly chloroplastic, involved in various metabolic processes. Several targets are related to photosynthesis, such as the Calvin cycle enzymes phosphoglycerate kinase and ribose-5-phosphate isomerase. A number of targets, such as chaperones and peroxiredoxins, are related to stress responses. The glutathionylation of HSP70B, chloroplastic 2-Cys peroxiredoxin and isocitrate lyase was confirmed in vitro on purified proteins and the targeted residues were identified.
Molecular & Cellular Proteomics | 2011
Timo Mühlhaus; Julia Weiss; Dorothea Hemme; Frederik Sommer; Michael Schroda
Crop-plant-yield safety is jeopardized by temperature stress caused by the global climate change. To take countermeasures by breeding and/or transgenic approaches it is essential to understand the mechanisms underlying plant acclimation to heat stress. To this end proteomics approaches are most promising, as acclimation is largely mediated by proteins. Accordingly, several proteomics studies, mainly based on two-dimensional gel-tandem MS approaches, were conducted in the past. However, results often were inconsistent, presumably attributable to artifacts inherent to the display of complex proteomes via two-dimensional-gels. We describe here a new approach to monitor proteome dynamics in time course experiments. This approach involves full 15N metabolic labeling and mass spectrometry based quantitative shotgun proteomics using a uniform 15N standard over all time points. It comprises a software framework, IOMIQS, that features batch job mediated automated peptide identification by four parallelized search engines, peptide quantification and data assembly for the processing of large numbers of samples. We have applied this approach to monitor proteome dynamics in a heat stress time course using the unicellular green alga Chlamydomonas reinhardtii as model system. We were able to identify 3433 Chlamydomonas proteins, of which 1116 were quantified in at least three of five time points of the time course. Statistical analyses revealed that levels of 38 proteins significantly increased, whereas levels of 206 proteins significantly decreased during heat stress. The increasing proteins comprise 25 (co-)chaperones and 13 proteins involved in chromatin remodeling, signal transduction, apoptosis, photosynthetic light reactions, and yet unknown functions. Proteins decreasing during heat stress were significantly enriched in functional categories that mediate carbon flux from CO2 and external acetate into protein biosynthesis, which also correlated with a rapid, but fully reversible cell cycle arrest after onset of stress. Our approach opens up new perspectives for plant systems biology and provides novel insights into plant stress acclimation.
Nucleic Acids Research | 2006
Erika D. von Gromoff; Michael Schroda; Ulrike Oster; Christoph F. Beck
Chloroplast-derived signals control a subset of nuclear genes in higher plants and eukaryotic algae. Among the types of signals identified are intermediates of chlorophyll biosynthesis such as Mg-protoporphyrin IX (MgProto). In Chlamydomonas reinhardtii, it was suggested that this tetrapyrrole mediates the light induction of chaperone gene HSP70A. Here we have analyzed cis elements involved in the regulation of HSP70A by MgProto and light. We identified two promoters and between their transcription start sites two regulatory regions that each may confer inducibility by MgProto and light to both HSP70A promoters. These regulatory regions, when cloned in front of basal non-light inducible heterologous promoters, conferred inducibility by MgProto and light. The orientation and distance independent function of these cis-regulatory sequences qualifies them as enhancers that mediate the response of nuclear genes to a chloroplast signal. Mutational analysis of one of these regulatory regions and an alignment with promoters of other MgProto-inducible genes revealed the sequence motif (G/C)CGA(C/T)N(A/G)N15 (T/C/A)(A/T/G) which, as shown for HSP70A, may confer MgProto responsiveness. This cis-acting sequence element is employed for induction of HSP70A by both MgProto and light, lending support to the model that light induction of this gene is mediated via MgProto.
The Plant Cell | 2012
André Nordhues; Mark Aurel Schöttler; Ann-Katrin Unger; Stefan Geimer; Stephanie Schönfelder; Stefan Schmollinger; Mark Rütgers; Giovanni Finazzi; Barbara Soppa; Frederik Sommer; Timo Mühlhaus; Thomas Roach; Anja Krieger-Liszkay; Heiko Lokstein; José L. Crespo; Michael Schroda
This work shows that suppressing the expression of the vesicle-inducing protein in plastids (VIPP1) in Chlamydomonas leads to aberrant structures at the origin of thylakoids and to structural defects particularly in photosystem II that render mutants sensitive to high light. The data indicate that VIPPs act in the biogenesis of thylakoid membrane core complexes, in particular the photosystems. The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids.
Plant Molecular Biology | 1996
Christian Drzymalla; Michael Schroda; Christoph F. Beck
The nuclear heat shock geneHSP70B ofChlamydomonas reinhardtii is inducible by heat stress and light. Induction by either environmental cue resulted in a transient elevation in HSP70B protein. Here we describe the organization and nucleotide sequence of theHSP70B gene. The deduced protein exhibits a distinctly higher homology to prokaryotic HSP70s than to those of eukaryotes, including the cytosolic HSP70A ofChlamydomonas reinhardtii. The HSP70B protein, as previously demonstrated by in vitro translation, is synthesized with a cleavable presequence. Using an HSP70B-specific antibody, this heat shock protein was localized to the chloroplast by cell fractionation experiments. A stromal location was suggested by the presence of a conserved sequence motif used for cleavage of presequences by a signal peptidase of the stroma. Amino acid alignments of HSP70 proteins from various organisms and different cellular compartments allowed the identification of sequence motifs, which are diagnostic for HSP70s of chloroplasts and cyanobacteria.