Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Seimetz is active.

Publication


Featured researches published by Michael Seimetz.


Cell | 2011

Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced Emphysema and Pulmonary Hypertension in Mice

Michael Seimetz; Nirmal Parajuli; Alexandra Pichl; Florian Veit; Grazyna Kwapiszewska; Friederike C. Weisel; Katrin Milger; Bakytbek Egemnazarov; Agnieszka Turowska; Beate Fuchs; Sandeep Nikam; Markus Roth; Akylbek Sydykov; Thomas Medebach; Walter Klepetko; Peter Jaksch; Rio Dumitrascu; Holger Garn; Robert Voswinckel; Sawa Kostin; Werner Seeger; Ralph T. Schermuly; Friedrich Grimminger; Hossein Ardeschir Ghofrani; Norbert Weissmann

Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD.


American Journal of Respiratory and Critical Care Medicine | 2014

Stimulation of soluble guanylate cyclase prevents cigarette smoke-induced pulmonary hypertension and emphysema.

Norbert Weissmann; Borja Lobo; Alexandra Pichl; Nirmal Parajuli; Michael Seimetz; Raquel Puig-Pey; Elisabet Ferrer; Victor I. Peinado; David Domínguez-Fandos; Athanasios Fysikopoulos; Johannes-Peter Stasch; Hossein Ardeschir Ghofrani; Núria Coll-Bonfill; Reiner Frey; Ralph T. Schermuly; Jéssica García-Lucio; Isabel Blanco; Mariola Bednorz; Olga Tura-Ceide; Elsa Tadele; Ralf P. Brandes; Jan Grimminger; Walter Klepetko; Peter Jaksch; Robert Rodriguez-Roisin; Werner Seeger; Friedrich Grimminger; Joan Albert Barberà

RATIONALE Chronic obstructive pulmonary disease (COPD) is a major cause of death worldwide. No therapy stopping progress of the disease is available. OBJECTIVES To investigate the role of the soluble guanylate cyclase (sGC)-cGMP axis in development of lung emphysema and pulmonary hypertension (PH) and to test whether the sGC-cGMP axis is a treatment target for these conditions. METHODS Investigations were performed in human lung tissue from patients with COPD, healthy donors, mice, and guinea pigs. Mice were exposed to cigarette smoke (CS) for 6 hours per day, 5 days per week for up to 6 months and treated with BAY 63-2521. Guinea pigs were exposed to CS from six cigarettes per day for 3 months, 5 days per week and treated with BAY 41-2272. Both BAY compounds are sGC stimulators. Gene and protein expression analysis were performed by quantitative real-time polymerase chain reaction and Western blotting. Lung compliance, hemodynamics, right ventricular heart mass alterations, and alveolar and vascular morphometry were performed, as well as inflammatory cell infiltrate assessment. In vitro assays of cell adhesion, proliferation, and apoptosis have been done. MEASUREMENTS AND MAIN RESULTS The functionally essential sGC β1-subunit was down-regulated in patients with COPD and in CS-exposed mice. sGC stimulators prevented the development of PH and emphysema in the two different CS-exposed animal models. sGC stimulation prevented peroxynitrite-induced apoptosis of alveolar and endothelial cells, reduced CS-induced inflammatory cell infiltrate in lung parenchyma, and inhibited adhesion of CS-stimulated neutrophils. CONCLUSIONS The sGC-cGMP axis is perturbed by chronic exposure to CS. Treatment of COPD animal models with sGC stimulators can prevent CS-induced PH and emphysema.


Journal of Hypertension | 2014

Arterial hypertension in a murine model of sleep apnea: role of NADPH oxidase 2.

Richard M. Schulz; Gulsina Murzabekova; Bakytbek Egemnazarov; Simone Kraut; Hans-Joachim Eisele; Rio Dumitrascu; Jörg Heitmann; Michael Seimetz; Martin Witzenrath; Hossein Ardeschir Ghofrani; Ralph T. Schermuly; Friedrich Grimminger; Werner Seeger; Norbert Weissmann

Objectives: To investigate whether NADPH oxidase 2 (NOX2), a major source of reactive oxygen species (ROS), contributes to the emergence of arterial hypertension in a murine model of sleep apnea. Background: Obstructive sleep apnea (OSA) is a risk factor for arterial hypertension and it is linked to oxidative stress. Methods: C57BL/6J mice were exposed to chronic intermittent hypoxia (CIH) for 6 weeks (5 days/week, 8 h/day, alternating cycles of hypoxia and normoxia, each lasting 120 s, nadir FiO2: 7%). Blood pressure was monitored by telemetric catheters implanted into the abdominal aorta. Pharmacological inhibition of NOX by apocynin and NOX2-deficient mice were used to assess the role of NOX in CIH-induced arterial hypertension. NOX2 gene expression was measured by real-time PCR in different cardiovascular tissues. Results: When compared with room air conditions, wild-type mice showed significant blood pressure elevations after exposure to CIH. This response was attenuated after treating animals with apocynin and in NOX2 (=gp91phox) knockout mice, whereas NOX2 was not upregulated in the heart, aorta, and femoral/carotid arteries of CIH mice. Conclusion: We suggest that the CIH-induced arterial hypertension is mediated by ROS derived from an activation of NOX2 within cells located outside the cardiovascular system.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice

Norbert Weissmann; Dorothea M. Peters; Christina Klöpping; Karsten Krüger; Christian Pilat; Susmitha Katta; Michael Seimetz; Hossein Ardeschir Ghofrani; Ralph T. Schermuly; Martin Witzenrath; Werner Seeger; Friedrich Grimminger; Frank C. Mooren

Pulmonary hypertension (PH) is a disease with a poor prognosis characterized by a vascular remodeling process and an increase in pulmonary vascular resistance. While a variety of reports demonstrated that exercise training exerts beneficial effects on exercise performance and quality of life in PH patients, it is not known how physical exercise affects vascular remodeling processes occurring in hypoxia-induced PH. Therefore, we investigated the effect of individualized exercise training on the development of hypoxia-induced PH in mice. Training effects were compared with pharmacological treatment with the phosphodiesterase 5 inhibitor Sildenafil or a combination of training plus Sildenafil. Trained mice who received Sildenafil showed a significantly improved walking distance (from 88.9 ± 8.1 to 146.4 ± 13.1 m) and maximum oxygen consumption (from 93.3 ± 2.9 to 105.5 ± 2.2% in combination with Sildenafil, to 102.2 ± 3.0% with placebo) compared with sedentary controls. Right ventricular systolic pressure, measured by telemetry, was at the level of healthy normoxic animals, whereas right heart hypertrophy did not benefit from training. Most interestingly, the increase in small pulmonary vessel muscularization was prevented by training. Respective counterregulatory processes were detected for the nitric oxide-soluble guanylate cyclase-phosphodiesterase system. We conclude that individualized daily exercise can prevent vascular remodeling in hypoxia-induced PH.


PLOS ONE | 2013

Functional and Muscular Adaptations in an Experimental Model for Isometric Strength Training in Mice

Karsten Krüger; Denise K. Gessner; Michael Seimetz; Jasmin Banisch; Robert Ringseis; Klaus Eder; Norbert Weissmann; Frank C. Mooren

Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST) for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT) or a regular endurance training group (ET) groups were used as controls. Performance capacity was determined by maximum holding time (MHT) and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK), succinate dehydrogenase (SDHa), and glucose transporter type 4 (GLUT4) were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO2max, a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.


Pulmonary circulation | 2014

Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease

Djuro Kosanovic; Bhola K. Dahal; Dorothea M. Peters; Michael Seimetz; Malgorzata Wygrecka; Katrin Hoffmann; Jochen Antel; Irwin Reiss; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Ralph T. Schermuly

Our previous findings demonstrated an increase in pulmonary mast cells (MCs) in idiopathic pulmonary arterial hypertension (IPAH). Also, literature suggests a potential role for MCs in chronic obstructive pulmonary disease (COPD). However, a comprehensive investigation of lungs from patients is still needed. We systematically investigated the presence/expression of MCs/MC chymase in the lungs of IPAH and COPD patients by (immuno)histochemistry and subsequent quantification. We found that total and perivascular chymase-positive MCs were significantly higher in IPAH patients than in donors. In addition, chymase-positive MCs were located in proximity to regions with prominent expression of big-endothelin-1 in the pulmonary vessels of IPAH patients. Total and perivascular MCs around resistant vessels were augmented and a significant majority of them were degranulated (activated) in COPD patients. While the total chymase-positive MC count tended to increase in COPD patients, the perivascular number was significantly enhanced in all vessel sizes analyzed. Surprisingly, MC and chymase-positive MC numbers positively correlated with better lung function in COPD. Our findings suggest that activated MCs, possibly by releasing chymase, may contribute to pulmonary vascular remodeling in IPAH. Pulmonary MCs/chymase may have compartment-specific (vascular vs. airway) functions in COPD. Future studies should elucidate the mechanisms of MC accumulation and the role of MC chymase in pathologies of these severe lung diseases.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Time course of cigarette smoke-induced changes of systemic inflammation and muscle structure

Karsten Krüger; Gabriel Dischereit; Michael Seimetz; Jochen Wilhelm; Norbert Weissmann; Frank C. Mooren

It has become more evident that long-term cigarette smoking (LTCS) has an important extrapulmonary toxicity. The aim of the study was to investigate the time-dependent effects of cigarette smoke exposure on exercise capacity, markers of systemic inflammation, and skeletal muscle structure. c57bl/6j-mice were either exposed to mainstream cigarette smoke for 6 h/day, 5 days/wk [smoke-exposed (SE) group] or assigned to the control, unexposed group (Con group). SE group mice were exposed for 8, 16, 24, and 32 wk to smoke and unexposed Con mice were used as age-matched controls. Exercise capacity was investigated by spiroergometry. Systemic inflammatory status was analyzed by flow cytometry and multiplexed fluorescent immunoassay. For analysis of muscle tissue, histological techniques and microarray analysis were used. Mice of the SE group exhibited a lower increase of body mass and a decrease of V̇o2 max (P < 0.05). An increase of lymphocyte CD62, ICAM, and VCAM expression was found in SE mice (P < 0.05). A biphasic trend of protein up- and downregulation was observed in markers of systemic inflammation, tissue deterioration, and allergic reactions such as C-reactive protein (CRP), eotaxin, haptoglobin, macrophage colony-stimulating factor-1 (M-CSF-1), and macrophage inflammatory protein-1γ (MIP-1γ). Thereby, the expression of several chemotactic proteins in plasma correlated with their expression in muscle. A time-dependent decrease of muscle mass, oxidative type-I fibers, and muscle cross-sectional area was found (P < 0.05). Microarray analysis revealed a SE-induced upregulation of several pathways of metabolic processes and tissue degradation. Taken together it was found that the loss of exercise capacity and systemic inflammation are early events of SE, which might induce muscular atrophy and loss of oxidative muscle capacity.


PLOS ONE | 2015

Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice.

Michael Seimetz; Nirmal Parajuli; Alexandra Pichl; Mariola Bednorz; Hossein Ardeschir Ghofrani; Ralph T. Schermuly; Werner Seeger; Friedrich Grimminger; Norbert Weissmann

Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.


Pulmonary circulation | 2013

Rhodiola: an ordinary plant or a promising future therapy for pulmonary hypertension? a brief review

Djuro Kosanovic; Xia Tian; Oleg Pak; Ying-Ju Lai; Yi-Ling Hsieh; Michael Seimetz; Norbert Weissmann; Ralph T. Schermuly; Bhola K. Dahal

Pulmonary hypertension (PH) is a chronic, complex, and progressive disease that eventuates in fatality. Research efforts over the past decades have resulted in therapeutic options that improve quality of life and prolong survival of patients, but they do not offer a cure. We propose a philosophical model that a disturbed balance of yin and yang results in pulmonary vascular remodeling, the hallmark of PH pathology. The model may be useful in exploring the wisdom of traditional Chinese medicine and incorporating it into mainstream PH research. In this context, the medicinal plant Rhodiola can be of profound interest owing to its variety of health-friendly attributes. Rhodiola has been shown to be beneficial in high-altitude-related symptoms and acute exacerbation of PH; moreover, improvement of PH has been demonstrated experimentally in chronically hypoxic rats. The beneficial effects of Rhodiola in PH may be attributable to its potential targeting of the signaling pathways, such as endothelin-1, nitric oxide, vascular endothelial growth factor, angiotensin-converting enzyme, nuclear factor κ-B, tumor necrosis factor α, and interleukin-6. Alterations in these mediators are implicated in PH pathogenesis, the characteristics of which include chronic pulmonary vasoconstriction, vasoproliferation, and vascular inflammation. Salidroside, one of the compounds extracted from Rhodiola, has been found to provide therapeutic benefits in experimental PH. As the data are limited and the field is in its infancy, further studies including in-depth analysis of the therapeutic effects on various animal models of PH are desirable. We believe that future PH research should place an adequate and special emphasis on exploring and promoting the potential of traditional Chinese medicine, and to this end, the medicinal plant Rhodiola offers a promising field on which to embark.


Experimental Diabetes Research | 2016

Endurance and Resistance Training Affect High Fat Diet-Induced Increase of Ceramides, Inflammasome Expression, and Systemic Inflammation in Mice

Cornelia Mardare; Karsten Krüger; Gerhard Liebisch; Michael Seimetz; Aline Couturier; Robert Ringseis; Jochen Wilhelm; Norbert Weissmann; Klaus Eder; Frank-Christoph Mooren

The study aimed to investigate the effects of differentiated exercise regimes on high fat-induced metabolic and inflammatory pathways. Mice were fed a standard diet (ST) or a high fat diet (HFD) and subjected to regular endurance training (ET) or resistance training (RT). After 10 weeks body weight, glucose tolerance, fatty acids (FAs), circulating ceramides, cytokines, and immunological mediators were determined. The HFD induced a significant increase in body weight and a disturbed glucose tolerance (p < 0.05). An increase of plasma FA, ceramides, and inflammatory mediators in adipose tissue and serum was found (p < 0.05). Both endurance and resistance training decreased body weight (p < 0.05) and reduced serum ceramides (p < 0.005). While RT attenuated the increase of NLRP-3 (RT) expression in adipose tissue, ET was effective in reducing TNF-α and IL-18 expression. Furthermore, ET reduced levels of MIP-1γ, while RT decreased levels of IL-18, MIP-1γ, Timp-1, and CD40 in serum (p < 0.001), respectively. Although both exercise regimes improved glucose tolerance (p < 0.001), ET was more effective than RT. These results suggest that exercise improves HFD-induced complications possibly through a reduction of ceramides, the reduction of inflammasome activation in adipose tissues, and a systemic downregulation of inflammatory cytokines.

Collaboration


Dive into the Michael Seimetz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge